Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+x-p=0 x^2+x=p x(x+1)=p mà p là số nguyên tố
x=1 và x+1=p p=2 thõa mãn đk thế vào trên tính được x1 và x2
Xét n > 9 , ta có
\(S=2^9+2^{13}+2^n=2^9\left(1+2^{13}+2^{n-9}\right)\)
Vì \(\left(1+2^{13}+2^{n-9}\right)\)lẻ nên S chia hết cho 29 nhưng không chia hết cho 210 nên không là số chính phương
Xét n < 0 , ta có
\(S=2^9+2^{13}+2^n=2^n\left(1+2^{13-n}+2^{9-n}\right)\)
Vì \(\left(1+2^{13-n}+2^{9-n}\right)\) lẻ mà S là số chính phương nên 2n là số chính phương => n chẵn => \(n\in\left\{2;4;6;8\right\}\)
Khi đó , S là số chính phương , 2n là số chính phương => \(\left(1+2^{13-n}+2^{9-n}\right)\) là số chính phương
Số chính phương lẻ luôn có chữ số tận cùng là 1,9,5
Ta xét từng trường hợp nhưng nhận thấy không có trường hợp nào thõa mãn
Vậy với n = 9 thì ............
mình xin ghi lại cái đề nha Tập hợp các giá trị nguyên x thỏa mãn x^2+x-p=2 (với p là số nguyên tố)
số nguyên tố p có thể là 2;3;5;7;11....
nhưng chỉ với p=2 thì pt đã cho mới có x nguyên
=> x^2+x-2=0
=> x=-2;x=1
bạn có câu tl chưa....mình cx k làm đúng
mình tìm đc -6;-1;5
bạn ơi chỉ có -6 và 5 thui còn -1 không phải nha bạn