Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) ta có : \(A=tan5.tan10...tan85\)
\(=\left(tan5.tan85\right).\left(tan10.tan80\right)...\left(tan40.tan50\right).tan45\)
\(=\left(tan5.tan\left(90-5\right)\right).\left(tan10.tan\left(90-10\right)\right)...\left(tan40.tan\left(90-40\right)\right).tan45\)
\(=\left(tan5.cot5\right).\left(tan10.cot10\right)...\left(tan40.cot40\right).tan45\)\(=tan45=1\)
+) ta có : \(B=cot3.cot6...cot87\)
\(=\left(cot3.cot87\right).\left(cot6.cot84\right)...\left(cot42.cot48\right).cot45\)
\(=\left(cot3.cot\left(90-3\right)\right).\left(cot6.cot\left(90-6\right)\right)...\left(cot42.cot\left(90-42\right)\right).cot45\)\(=\left(cot3.tan3\right).\left(cot6.tan6\right)...\left(cot42.tan42\right).cot45\)
\(=cot45=1\)
\(\left(tanx-cotx\right)^2=9\Rightarrow tan^2x+cot^2x-2=9\Rightarrow tan^2x+cot^2x=11\)
\(tan^2x+cot^2x+2=13\Rightarrow\left(tanx+cotx\right)^2=13\Rightarrow tanx+cotx=\pm\sqrt{13}\)
\(tan^4x-cot^4x=\left(tan^2x+cot^2x\right)\left(tan^2x-cot^2x\right)\)
\(=\left(tan^2x+cot^2x\right)\left(tanx-cotx\right)\left(tanx+cotx\right)\)
\(=11.3.\left(\pm\sqrt{13}\right)=\pm33\sqrt{13}\)
a/ \(cos^2a=1-sin^2a=\frac{5}{9}\)
\(P=\frac{sin^2a}{cos^2a}-\frac{2cos^2a}{sin^2a}=\frac{\frac{4}{9}}{\frac{5}{9}}-\frac{\frac{10}{9}}{\frac{4}{9}}=-\frac{17}{10}\)
b/ \(M=\frac{1}{\frac{sina}{cosa}+\frac{cosa}{sina}}=\frac{1}{\frac{sin^2a+cos^2a}{sina.cosa}}=sina.cosa=\frac{2\sqrt{2}}{9}\)
\(\left(\tan a+\cot a\right)^2-\left(\tan a-\cot a\right)^2=4\tan a\cdot\cot a\)\(=4\cdot1=4\)