K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(a\ne0\)

\(f\left(1\right)=2\)

\(\Rightarrow a+b=2\)

\(f\left(3\right)=8\)

\(\Rightarrow3a+b=8\)

\(\Rightarrow2a+a+b=8\)

\(\Rightarrow2a=6\)

\(\Rightarrow a=3\)

\(\Leftrightarrow b=-1\)

Vậy đa thức đã cho là \(f\left(x\right)=3x-1\)

18 tháng 7 2018

a≠0

ƒ (1)=2

⇒a+b=2

ƒ (3)=8

⇒3a+b=8

⇒2a+a+b=8

⇒2a=6

⇒a=3

⇔b=−1

Vậy đa thức đã cho là ƒ (x)=3x−1

8 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)

\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên

\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)

\(\Rightarrow2b\) nguyên

\(\Rightarrowđpcm\)

8 tháng 3 2019

\(36-y^2\le36\)

\(8\left(x-2010\right)^2\ge0;8\left(x-2010\right)^2⋮8\)

\(\Rightarrow\hept{\begin{cases}0\le8\left(x-2010\right)^2\le36\\8\left(x-2010\right)^2⋮8\\8\left(x-2010\right)^2\in N\end{cases}}\)

Giai tiep nhe

17 tháng 7 2018

Ta có: \(f\left(0\right)=a.0^2+b.0+c=c=1\)

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=2\Rightarrow a+b+1=2\Rightarrow a+b=1\) (1)

\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c=2\Rightarrow2\left(2a+b\right)+1=2\Rightarrow2\left(2a+b\right)=1\Rightarrow2a+b=\frac{1}{2}\) (2)

Lấy (2) trừ (1) ta được: \(a=\frac{-1}{2}\)

\(\Rightarrow b=1-\left(\frac{-1}{2}\right)=\frac{3}{2}\)

Vậy a = -1/2 , b = 3/2 , c = 1

9 tháng 5 2019

Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1

=>2 và 1 cũng là nghiệm của B(x)

<=>B(1)=0 và B(2)=0

<=>2+a+b+4=0 và 16+4a+2b+4=0

<=>a+b=-6 và 2(2a+b)=-20

<=>a+b=-6 và 2a+b=-10

Suy ra:a=-4 và b=-2

24 tháng 4 2019

\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1

ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)

\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)

Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)

b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?

Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)

Theo bài ta có các giả thiết sau:  

\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)

\(m^2⋮n^2\Rightarrow m⋮n\)(2)

=> Đặt m=kn (k là số tự nhiên, K>1)

Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)

Vậy nên k=2 hoặc bằng 3

Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)

+) Với k=2

Ta có: \(\overline{dcba}=4.\overline{abcd}\)

Vì  \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)

và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)

@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)

Nên a=1.

Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1

+) Với K=3

tương tự lập luận trên ta có a=1

Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9

Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)

\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9

=> b=0; c=8

=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán 

25 tháng 1 2017

mình chịu