K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0

a: BC=10cm

C=AB+BC+AC=6+8+10=24(cm)

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

23 tháng 2 2022

9999999999999

23 tháng 2 2022

 a) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)

\(BC^2=AB^2+AC^2\)

\(BC^2=3^2+3^2\Rightarrow BC=3\sqrt{2}cm=18\left(cm\right)\)

b) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)ta có :

\(BC^2+AB^2+AC^2\)

\(BC^2=4^2+6^2\)

\(BC=28\left(cm\right)\)

c) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\), ta có :

\(BC^2=AB^2+AC^2=BC^2=5^2+3^2\Rightarrow BC=25+9=34\left(cm\right)\)

d) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)ta có :

\(BC^2=AB^2+AC^2=BC^2=5^2+5^2=5\sqrt{2}=50\left(cm\right)\)

Câu 1. Trong một tam giác vuông, kết luận nào sau đây là đúng ?A. Tổng hai góc nhọn bằng 180 0 B. Hai góc nhọn bằng nhauC. Hai góc nhọn phô nhau D. Hai góc nhọn kề nhau .Câu 2: Chọn câu trả lời đúng. Cho tam giác ABC có 00A50;B60 thì C?A. 70 0 B. 110 0 C. 90 0 D. 50 0Câu 3. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:A. 1cm ; 2cm ; 3cm B. 2cm ; 3cm ; 4cmC. 3cm ; 4cm ; 5cm D. 4cm ; 5cm ;...
Đọc tiếp

Câu 1. Trong một tam giác vuông, kết luận nào sau đây là đúng ?
A. Tổng hai góc nhọn bằng 180 0 B. Hai góc nhọn bằng nhau
C. Hai góc nhọn phô nhau D. Hai góc nhọn kề nhau .
Câu 2: Chọn câu trả lời đúng. Cho tam giác ABC có 00

A50;B60 thì C?

A. 70 0 B. 110 0 C. 90 0 D. 50 0
Câu 3. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 1cm ; 2cm ; 3cm B. 2cm ; 3cm ; 4cm
C. 3cm ; 4cm ; 5cm D. 4cm ; 5cm ; 6cm
Câu 4: Chọn câu sai.
A. Tam giác có hai cạnh bằng nhau là tam giác cân.
B. Tam giác có ba cạnh bằng nhau là tam giác đều.
C. Tam giác cân là tam giác đều.
D. Tam giác đều là tam giác cân.
Câu 5: Tam giác ABC vuông tại B suy ra:
A. AB 2 = BC 2 + AC 2 B. BC 2 = AB 2 + AC 2
C. AC 2 = AB 2 + BC 2 D. Cả a,b,c đều đúng
Câu 6: Hãy điền dấu X vào ô trống mà em đã chọn :
Câu Nội dung Đúng Sai
1 Tam giác vuông có một góc bằng 045 là tam giác vuông cân
2 Tam giác cân có một góc bằng 060 là tam giác đều
3 Nếu ABC là một tam giác đều thì ABC là tam giác cân
4 Nếu hai cạnh và một góc của tam giác này bằng hai cạnh và
một góc của tam giác kia thì hai tam giác đó bằng nhau
Câu 7: a). Cho ABC vuông tại A có AB = 8 cm; AC = 6 cm thì BC bằng :
A. 25 cm B. 14 cm C. 100 cm D. 10 cm
b). Cho ABC cân tại A, biết 050B thì A bằng :
A. 080 B. 050 C. 0100 D. Đáp án khác
Câu 8 . Tam giác ABC có:
A. 0ABC90 B. 0ABC180 C. 0ABC45 D. 0ABC0
Câu 9:  ABC =  DEF Trường hợp cạnh – góc – cạnh nếu
A. AB = DE; BF ; BC = EF B. AB = EF; BF ; BC = DF
C. AB = DE; BE ; BC = EF D. AB = DF; BE ; BC = EF
Câu 10. Góc ngoài của tam giác bằng :
A. Tổng hai góc trong không kề với nó. B. Tổng hai góc trong
C. Góc kề với nó D. Tổng ba góc trong của tam giác.

1
26 tháng 2 2020

Câu 1: C

Câu 2:A

Câu 3:C

Câu 4 C

Câu 5: B

Câu 6 1Đ, 2Đ, 3Đ, 4S

Câu 7: a, Đ

Câu 10 A.

Các câu khác k rõ đề

8 tháng 2 2019

A B C K H I

a,áp dụng định lý py-ta-go vào tam giác vuông ABC ta có 

\(AB^2+AC^2=BC^2\)

\(3^2+4^2=BC^2\)

\(9+16=BC^2\)

\(25=BC^2\)

\(\Rightarrow BC=5cm\)

b, Ta có :

\(\hept{\begin{cases}HK\perp AC\left(gt\right)\\AB\perp AC\left(\Delta ABC\perp A\right)\end{cases}}\)

\(\Rightarrow HK//AB\left(\perp AC\right)\)

c, Xét tam giác vuông AKH và tam giác vuông  AIH có:

AH : cạnh chung

HI=HK(GT)

=>  tam giác vuông AKH = tam giác vuông  AIH ( 2 cạnh góc vuông )

=>  AK = AI ( 2 cạnh tương ứng )

=> tam giác AKI cân tại A(AK = AI  : 2 CẠNH BÊN)  

d, ta có tam giác AKI cân tại A( cmt )

\(\Rightarrow\widehat{AIK}=\widehat{AKI}\)( 2  góc ở đáy)              (1)

lại có HK // AB ( cmt)

=>\(\widehat{BAK}=\widehat{AKI}\)(   2 góc slt)                (2)

từ (1) và (2) =>\(\widehat{AIK}=\widehat{BAK}\left(=\widehat{AKI}\right)\)

e, ta có tam giác vuông AKH = tam giác vuông  AIH (cmt)

\(\Rightarrow\widehat{KAH}=\widehat{IAH}\)( 2 Góc tương ứng)

xét tam giác AIC và tam giác AKC có :

AK=AI(GT)

AC: cạnh chung

\(\widehat{KAH}=\widehat{IAH}\)(CMT)

=> tam giác AIC = tam giác AKC (C-G-C)

mk giải bài ktra cho các bn lớp 7a nè ko bt z đây mà chép 

Câu 5 (bài cuối cùng ý)

8 tháng 2 2019

bài này tao làm khác mày cơ 

21 tháng 3 2022

 \(\Delta ABC\) vuông tại B => AC là cạnh huyền

Áp dụng định lý Pitago ta có:

\(AC^2=AB^2+BC^2=>4^2=AB^2+\sqrt{7}^2\)

\(=>16=AB^2+7\)

*Chỗ này bạn lưu ý bình phương của căn bậc 2 của 1 số thì là chính số đó

\(=>AB^2=16-7=9\\ =>AB=\sqrt{9}=3cm\)

=> Chọn A

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)