K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

A B C M N

Xét \(\Delta ABM\)cân tại \(B\)

\(\Rightarrow\)Góc \(AMN=\frac{180^o-ABC}{2}=90^o-\frac{ABC}{2}\)

Xét \(\Delta ACN\)cân tại \(C\)

\(\Rightarrow\)Góc \(ANM=\frac{180^o-ACB}{2}=90^o-\frac{ACB}{2}\)

Xét \(\Delta MAN:\)

\(MAN+ANM+AMN=180^o\)

\(\Rightarrow MAN-\frac{ABC+ACB}{2}=180^o-180^o\)

\(MAN=\frac{180^o-BAC}{2}\)

\(MAN=\frac{90^o}{2}=45^o\)

Vậy ...

11 tháng 9 2016

thanks you n` ~~

31 tháng 8 2023

Trước tiên, ta có BM = BC theo đề bài. Vì tam giác ABC vuông tại A, nên ta có góc BAC = 90 độ.

Tiếp theo, ta biết rằng phân giác tam giác ABC cắt AC tại K. Vì vậy, ta có góc BAK = góc CAK.

Tương tự, phân giác tam giác ABC cắt MC tại I, nên ta có góc BAM = góc CAM.

Vì CN = MA, nên ta có góc CAN = góc CMA.

Từ các quan sát trên, ta có thể thấy rằng góc BAK = góc BAM = góc CAN = góc CMA.

Vì vậy, ta có thể kết luận rằng K, M, N thẳng hàng.

BN+NC=BC

BA+AM=BM

mà BC=BM và NC=AM

nên BN=BA

Xét ΔBAK và ΔBNK có

BA=BN

góc ABK=góc NBK

BK chung

Do đó: ΔBAK=ΔBNK

=>góc BNK=90 độ và KA=KN

Xét ΔKAM vuông tại A và ΔKNC vuông tại N có

KA=KN

AM=NC

Do đó; ΔKAM=ΔKNC

=>góc AKM=góc NKC

=>góc AKM+góc AKN=180 độ

=>K,M,N thẳng hàng

19 tháng 6 2017

ko pc s thức kuya z

a) Xét ΔABC có 

\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\left(BM=CN;AB=AC\right)\)

nên MN//BC(Định lí Ta lét đảo)

Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân

b) \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)

\(\Leftrightarrow\widehat{BMN}=\widehat{MNC}=180^0-70^0=110^0\)

 e chưa học định lí ta let

 

6 tháng 7 2017

A M N B C H K

a) Vẽ MH \(⊥\)BC ; NK \(⊥\)BC

tam giác MBH = tam giác NCK ( cạnh huyền, góc nhọn )

suy ra BH = CK

b) tam giác ABN = tam giác ACM ( c.g.c )

suy ra BN = CM

Dễ thấy MN // BC

suy ra MN = HK ( tính chất đoạn chắn )

Ta có : BN > BK ; CM > CH ( quan hệ giữa đường xiên và đường vuông góc )

Vậy BN + CM > BK + CH hay BN + BN > ( BH + HK ) + CH

2BN > ( BH + CH ) + HK ; 2BN > BC + MN \(\Rightarrow BN>\frac{BC+MN}{2}\)

10 tháng 3 2020

Bài 2:

A B C M N P

a) Xét tam giác BMC và tam giác MCN có:

Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN 

\(\Rightarrow S_{BMC}=S_{MCN}\)

\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)

Xét tam giác ABC và tam giác BMC có:

Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM

\(\Rightarrow S_{ABC}=S_{BMC}\)(2)

Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)

CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)

\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)

\(=7S_{ABC}\left(đpcm\right)\)

10 tháng 3 2020

Bài 3: 

Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:

\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)

Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)

\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)

\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)

\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)

\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)

18 tháng 12 2017

ai giúp mk đi đg cần gấp

18 tháng 12 2017

a)  ADME là hình chữ nhật vì có 3 góc vuông:  \(\widehat{A}\)\(\widehat{D}\)\(\widehat{E}\)= 900

b)  Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)

Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông