Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A B C H 13 5
xét tam giác ABH vuông tại H có:
\(AH^2=AB^2-BH^2\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=12\)
theo tỉ lệ thức trong tam giác vuông ABC có:
\(AH^2=BH.CH\Rightarrow HC=\frac{AH^2}{BH}=\frac{12^2}{5}=\frac{144}{5}=28,8\)
xét tam giác vuông AHC có:
\(AC^2=AH^2+HC^2\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{12^2+28,8^2}=\frac{156}{5}=31,2\)
vậy : \(\sin B=\frac{AH}{AB}=\frac{12}{13}\)
\(\sin C=\frac{AH}{AC}=\frac{12}{31,2}=\frac{5}{13}\)
b) A B C H 3 4
theo tỉ số lượng giác trong tam giác ABC có:
\(AH^2=BH.CH\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3.4}=2\sqrt{3}\)
xét tam giác vuông ABH có:
\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{\left(2\sqrt{3}\right)^2+3^2}=\sqrt{21}\)
theo hệ thức lượng trong tam giác vuông ABC có:
\(AC^2=BC.HC\Rightarrow AC=\sqrt{BC.HC}=\sqrt{7.4}=2\sqrt{7}\)
Vậy : \(\sin B=\frac{AH}{AB}=\frac{2\sqrt{3}}{\sqrt{21}}=\frac{2\sqrt{7}}{7}\)
\(\sin C=\frac{AH}{AC}=\frac{2\sqrt{3}}{2\sqrt{7}}=\frac{\sqrt{21}}{7}\)
a: BH=0,5dm=5cm
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>AH^2=13^2-5^2=12^2
=>AH=12cm
sin B=AH/AB=12/13
sin C=sin HAC=BH/AB=5/13
b: ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>AH=2*căn 3(cm)
BC=3+4=7cm
\(AB=\sqrt{BH\cdot BC}=\sqrt{21}\left(cm\right)\)
\(AC=\sqrt{4\cdot7}=2\sqrt{7}\left(cm\right)\)
Xét ΔABC vuông tại A có
sin C=AB/BC=căn 21/7
sin B=AC/BC=2/căn 7
Tính AH: AH2 = BH * CH
=> AH = 12
Tính AB : AB2 = AH2 + BH2
=> AB = 15
sin C = \(\frac{AB}{BC}\)
AC2 = BC2 - AB2
=> AC= 20
Cos C = \(\frac{AC}{BC}\)
Tan B = \(\frac{AC}{AB}\)
Mình chỉ viết gợi ý thôi, k chi tiết lắm
A B C H 9 16
ta có BC = BH + HC = 9 + 16 = 25
\(\Delta\)ABC vuông tại A có đường cao AH
AB^2 = BH.BC = 9.25 =225
=> AB = 15
AC^2 = HC.BC = 16.25 = 400
=> AC = 20
sin C = \(\frac{AB}{BC}\)= \(\frac{15}{25}\)=\(\frac{3}{5}\)
cos C =\(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
tan B = \(\frac{AC}{AB}\frac{20}{15}\frac{4}{3}\)
A B H C 13 5
a) Áp dụng đlí Py - ta - go cho tam giác HAB ( ^H =90^o )
Ta có : \(AB^2=AH^2+BH^2\)
\(13^2=AH^2+5^2\)
\(AH^2=13^2-5^2\)
\(\Rightarrow AH=\sqrt{13^2-5^2}\)
\(\sin B=\frac{AH}{AB}=\frac{\sqrt{13^2-5^2}}{13}\approx0,923\)
Áp dụng hệ thức lượng cho tam giác ABC( ^A = 90^o ) , đường cao AH , ta có :
\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{12^2}{5}=28,8\)
=> BC = 5 + 28,8 = 33,8
\(\sin C=\frac{AB}{BC}=\frac{13}{33,8}\approx0,384\)
Vậy : \(\sin B\approx0,923\)
\(\sin C\approx0,384\)
B A C H
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{13^2}{5}=33,8\)
Áp dụng Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(AC^2=BC^2-AB^2\)
\(\Leftrightarrow\)\(AC^2=973,44\)
\(\Rightarrow\)\(AC=31,2\)
\(sinB=\frac{AC}{BC}=\frac{31,2}{33,8}=\frac{12}{13}\)
\(sinC=\frac{AB}{BC}=\frac{13}{33,8}=\frac{5}{13}\)
b) \(BC=BH+CH=7\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(AB^2=3.7=21\)
\(\Rightarrow\)\(AB=\sqrt{21}\)
\(AC^2=HC.BC\)
\(\Rightarrow\)\(AC^2=4.7=28\)
\(\Rightarrow\)\(AC=\sqrt{28}=2\sqrt{7}\)
\(sinB=\frac{AC}{BC}=\frac{2\sqrt{7}}{7}=\frac{2}{\sqrt{7}}\)
\(sinC=\frac{AB}{BC}=\frac{\sqrt{21}}{7}=\frac{\sqrt{3}}{\sqrt{7}}\)