Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Vì $AH:AC=3:5$ nên đặt $AH=3a; AC=5a$ với $a>0$
Ta có: $AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}$
$AH^2=\frac{AB^2AC^2}{BC^2}=\frac{AB^2.AC^2}{AB^2+AC^2}$
$(3a)^2=\frac{15^2.(5a)^2}{15^2+(5a)^2}$
$\Leftrightarrow 9a^2=\frac{225a^2}{a^2+9}$
$\Leftrightarrow 9=\frac{225}{a^2+9}$
$\Leftrightarrow 9(a^2+9)=225$
$\Rightarrow a=4$ (cm)
$AH=3a=12$ (cm); $AC=5a=20$ (cm)
Áp dụng định lý Pitago:
$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)
$HB=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)
b.
Vì $AEHF$ có 3 góc vuông $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên đây là hình chữ nhật
$\Rightarrow EF=AH$
Do đó: $EF.BC=AH.BC=2S_{ABC}=AB.AC$ (đpcm)
a, theo định lý pitago tính đc BC
sau đó xét tam giác đồng dạng ABH và CBA là tìm đc AH
hok tốt
a: Xét tứ giác AMHK có
góc AMH=góc AKH=góc KAM=90 độ
=>AMHK là hình chữ nhật
=>AH=MK
b: Xét ΔAHD có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHD cân tại A
=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AH=AE và AC là phân giác của góc HAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
c: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 dộ
=>BD vuông góc DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>goc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra BD//CE
Bài làm
a) Vì AH vuông góc với BC
=> Tam giác AHC vuông ở H.
=> \(\widehat{HAC}+\widehat{C}=90^0\) (1)
Vì HN vuông góc với AC
=> Tam giác HNC vuông ở N
=> \(\widehat{NHC}+\widehat{C}=90^0\) (2)
Từ (1) và (2) => \(\widehat{HAC}=\widehat{NHC}\)
Xét tam giác AHN và tam giác ACH có:
\(\widehat{ANH}=\widehat{HNC}\left(=90^0\right)\)
\(\widehat{HAC}=\widehat{NHC}\)
=> Tam giác AHN ~ tam giác ACH ( g - g )
b) Xét tam giác AHB vuông ở H,
Theo định lí Thales có:
\(AB^2=AH^2+HB^2\)
Hay \(15^2=12^2+HB^2\)
\(\Rightarrow225=144+HB^2\)
\(\Rightarrow HB^2=81\)
\(\Rightarrow HB=9\left(cm\right)\)
Xét tam giác AHC vuông ở H có:
\(AC^2=AH^2+HC^2\)
hay \(13^2=12^2+HC^2\)
\(\Rightarrow169=144+HC^2\)
\(\Rightarrow HC^2=25\left(cm\right)\)
\(\Rightarrow HC=5\left(cm\right)\)
Ta có: HB + HC = BC
hay 9 + 5 = BC
=> BC = 14 ( cm )
a) Xét \(\Delta DBH\) và \(\Delta DHA\)có:
\(\widehat{BDH}=\widehat{HDA}=90^0\)
\(\widehat{DBH}=\widehat{DHA}\) cùng phụ với góc DHB
suy ra: \(\Delta DBH~\Delta DHA\)
\(\Rightarrow\)\(\frac{DH}{DA}=\frac{BH}{HA}\) (1)
C/m tương tự ta có: \(\Delta HAB~\Delta HCA\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{BH}{HA}\) (2)
Từ (1) và (2) suy ra: \(\frac{DH}{DA}=\frac{AB}{AC}\)
bạn có nhầm đề bài ko?BD/CE hay BD.CE