K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2021

A B C 8 15 H M N 8

a, Xét tam giác ABC vuông tại A, đường cao AH 

\(AB^2+AC^2=BC^2\Rightarrow BC^2=64+225=289\Rightarrow BC=17\)cm 

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\)( tỉ số đồng dạng ) 

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.15}{17}=\frac{120}{17}\)cm 

b, Vì MH vuông AB 

NA vuông AB 

=> MH // NA tương tự ta có : MH // AN 

=> tứ giác AMNH là hình bình hành 

mà ^HNA = 900 ; ^BAC = 900 ; ^HMA = 900

=> tứ giác AMHN là hình vuông 

19 tháng 4 2021

xin lỗi mình nhầm, => tứ giác AMNH là hình chữ nhật 

17 tháng 4 2017

làm sao để xem câu trả lời

20 tháng 5 2022

loading...  loading...  đánh giá tốt giúp mk vs ạ

2 tháng 6 2020

áp dụng Pytago cho tam giác ABC ta đc: BC= \(\sqrt{15^2+8^2}=17\)

diện tích tam giác  ABC=1/2. AB.BC = 1/2 AH.BC => AB.BC=AH.BC=> AH=15.8:17=120/17

b, Tứ giác AMNH là hình chữ nhật vì có 3 góc vuông.

suy ra MN=AH = 120/17

c, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2

tam giác ANH đồng dạng tam giác AHC (g.g) => AN/AH = AH/AC => AN.AC = AH^2

suy ra AM.AB = AN.AC.

d. góc HAB = góc ACB ( cùng phụ góc CAH)

suy ra tam giác AMH đồng dạng tam giác CAB.

theo bài ta có \(S_{AMHN}=2S_{AMH}=\frac{1}{2}S_{CAB}\)

suy ra \(\frac{S_{AMH}}{S_{CAB}}=\frac{1}{4}\) mà 2 tam giác này đồng dạng nên suy ra \(\left(\frac{AH}{BC}\right)^2=\frac{1}{4}\Rightarrow\frac{AH}{BC}=\frac{1}{2}\Rightarrow AH=\frac{1}{2}BC\)

do đó tam giác ABC phải vuông cân.

29 tháng 5 2019

Bổ sung đề bài câu d,

Tam giác ABC cần thêm điều kiện gì để diện tích tứ giác AMHN bằng \(\frac{1}{2}\) diện tích tam giác ABC.

1 tháng 4 2020

B H M A C N

( Hình ảnh chỉ mang tính chất minh họa )

a) Tính BC và AH :

Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :

AB2+AC2=BC2AB2+AC2=BC2

82+152=BC282+152=BC2

BC=17(cm)⇒BC=17(cm)

Ta có : SABC=12ABAC=12AHBCSABC=12⋅AB⋅AC=12⋅AH⋅BC

AH=ABACBC=81517=12017(cm)⇔AH=AB⋅ACBC=8⋅1517=12017(cm)

b) Có Aˆ=900A^=900(giả thiết), Mˆ=900M^=900(hình chiếu), Nˆ=900N^=900(hình chiếu)

=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).

Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.

MN=AH=12017(cm)⇒MN=AH=12017(cm)

c) Vì N là hình chiếu của H trên AC NAC⇒N∈AC

mà MHMH//AN(hcn)AN(hcn) => MHMH//ACAC

Theo hệ quả của định lý Ta-let => AMAB=ANACAMAB=ANAC

Suy ra : AMAC=ANAB(đpcm)

18 tháng 3 2023

   

18 tháng 3 2023

File: undefined 

29 tháng 5 2019

a, tam giác ABC vuông tại A (gt)

=> AB^2 + AC^2 = BC ^2 (đl PYTAGO)

AB = 8; AC = 15

=> 8^2 + 15^2 = BC^2

=> BC^2 = 289

=> BC = 17 do BC > 0