K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

A B C K N M P Q

Ta dễ thấy tam giác KMN đồng dạng tam giác ABC (g.g)

\(\Rightarrow\frac{S_{KMN}}{S_{ABC}}=\left(\frac{MN}{BC}\right)^2\)

Vì \(S_{ABC}\) và \(MN\) không đổi nên \(S_{KMN}\) đạt giá trị nhỏ nhất khi MN đạt giá trị nhỏ nhất. Khi đó MN sẽ trùng với đường trung bình PQ trên hình vẽ . Vậy \(minS_{KMN}=\frac{1}{4}S_{ABC}\Leftrightarrow MN=PQ\)

29 tháng 10 2016

Khó quá

Gọi AD,BE,CF lần lượt là đường cao cảu tam giác ABC,mà H là trực tâm của tam giác ABC nên AD,BE,CF đồng quy tại H

Ta có:\(\widehat{HAM}=90^0-\widehat{AHE}=90^0-\widehat{BHD}=\widehat{KBH}\)

Ta lại có:\(\widehat{AHM}=90^0-\widehat{KHD}=\widehat{BKH}\)

Xét \(\Delta AHM\&\Delta BKH\)có:

\(\hept{\begin{cases}\widehat{HAM}=\widehat{KBH}\\\widehat{AHM}=\widehat{BKH}\end{cases}}\)

\(\Rightarrow\Delta HAM\)đồng dạng với \(\Delta BKH\left(g.g\right)\)(mk ko bt kí hiệu đồng dạng trong olm)

\(\Rightarrow\frac{AH}{BK}=\frac{HM}{HK}\)

\(CMTT:\Rightarrow\frac{AH}{KC}=\frac{HN}{HK}\)

Mà BK=KC\(\Rightarrow\frac{HM}{HK}=\frac{HN}{HK}\Rightarrow HM=HN\)

Suy ra HK là đường trung tuyến của tam giác NMK,mà HK cũng là đường cao của tam giác NMK

Suy ra tam giác NMK cân tại K(đpcm)

16 tháng 10 2021

Đề sai rồi bạn

Sai ở đâu vậy , bạn sửa rồi là giúp với ạ

20 tháng 10 2016

Bạn biết làm bài này hăm v

24 tháng 9 2017

Ghi ra thì hơi bị mất thời gian

25 tháng 7 2023

giúp e vs

 

24 tháng 7 2023

giúp mik vs ;-;