Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của AH và BC là I
Từ C kẻ CN // PQ (NAB),
Tứ giác CNPQ là hình thang, có H là trung điểm PQ, hai cạnh bên NP và CQ đồng quy tại A nên K là trung điểm CN MK là đường trung bình của BCN
MK // CN MK // AB (1)
H là trực tâm của ABC nên CHA B (2)
Từ (1) và (2) suy ra MK CH MK là đường cao củaCHK (3)
Từ AH BC MCHK MI là đường cao của CHK (4)
Từ (3) và (4) suy ra M là trực tâm của CHKMHCN MHPQ
MPQ có MH vừa là đường trung tuyến vừa là đường cao nên cân tại M
A B C E F M O K N H
a) Xét tứ giác BFEC: ^BFC=^BEC=900 => Tứ giác BFEC là tứ giác nội tiếp đường tròn (đpcm).
b) Dễ thấy tứ giác ABKC nội tiếp đường tròn (O) => ^CAK=^CBK hay ^CAN=^CBK (1)
AK là đường kính của (O); B nằm trên (O) => AB\(\perp\)BK
Mà CF\(\perp\)AB => BK//CF => ^CBK=^BCF (2)
(1); (2) => ^CAN=^BCF. Mà ^BCF=^CAH (Cùng phụ ^ABC) => ^CAN=^BAH hay ^CAN=^FAM
Lại có: ^ACN=^AHE (Cùng phụ ^HAC)
Dễ chứng minh tứ giác AFHE nội tiếp đường tròn => ^AHE=^AFE
=> ^ACN=^AFE. Hay ^ACN=^AFM
Xét \(\Delta\)AMF và \(\Delta\)ANC: ^ACN=^AFM; ^CAN=^FAM => \(\Delta\)AMF ~ \(\Delta\)ANC (g.g)
=> \(\frac{AM}{AN}=\frac{MF}{NC}\)(*)
=> ^AMF=^ANC => 1800 - ^AMF=1800 - ^ANC => ^FMH=^CNK
Tứ giác ABKC nội tiếp (O) => ^ABC=^AKC. Mà ^ABC=^AHF (Cùng phụ ^BAH)
=> ^AKC=^AHF hay ^NKC=^MHF.
Xét \(\Delta\)NCK và \(\Delta\)MFH: ^NKC=^MHF; ^CNK=^FMH => \(\Delta\)NKC ~ \(\Delta\)MFH (g.g)
=> \(\frac{HM}{NK}=\frac{FM}{NC}\)(**)
Từ (*) và (**) => \(\frac{AM}{AN}=\frac{HM}{NK}\Rightarrow\frac{AM}{HM}=\frac{AN}{NK}\)=> MN//HK (Định lí Thales đảo) (đpcm).
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )