Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
Tâm là trung điểm của BC
Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
=>B,E,D,C cùng thuộc 1 đường tròn
b: Vì \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên B,E,D,C cùng thuộc đường tròn đường kính BC
tâm là trung điểm I của BC
bán kính là BC/2
c: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC(1)
ΔABC cân tại A
mà AI là đường trung tuyến
nên AI\(\perp\)BC(2)
Từ (1),(2) suy ra A,H,I thẳng hàng
ΔABC đều
mà BD,CE là các đường cao
nên BD,CE là các đường trung tuyến
=>D,E lần lượt là trung điểm của AC,AB
Xét ΔABC có
BD,CE là các đường trung tuyến
BD cắt CE tại H
Do đó; H là trọng tâm của ΔABC
mà I là trung điểm của BC
nên \(AH=\dfrac{2}{3}AI\) và \(IH=\dfrac{1}{3}IA\)
ΔAIB vuông tại I
=>\(AB^2=AI^2+IB^2\)
=>\(AI^2=2^2-1^2=3\)
=>\(AI=\sqrt{3}\left(cm\right)\)
\(HI=\dfrac{1}{3}HA=\dfrac{1}{3}\sqrt{3}< \dfrac{1}{3}\cdot3=IB=R\)
=>H nằm trong (I)
\(IA=\sqrt{3}>1=IB=R\)
=>A nằm ngoài (I)
a)Nối F với D : E với D ta có:
Xét tam giác FBC ta có
D là trung điểm BC(1)
Góc BFC=90 (2)
Từ (1)(2)=>FD là trung tuyến của tam giác FBC
=>BD=CD=DF(*)
Chứng minh tương tự tam giác EBC
=>DE=DC=DB(**)
Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)
=>B;F;E;C thuộc đừng tròn
=>D là tâm của đường tròn
B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn
=>B;H;E;c ko thuộc đừng tròn
a/ Ta có
\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)
=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB
b/ Ta có
\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)
\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)
\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)
Mà \(AH\perp BC\Rightarrow DF\perp BC\)
c/
Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.
Nối I với H, D với H
Xét \(\Delta HDF\) và \(\Delta HEI\) ta có
\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)
\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)
Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)
\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)
\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\) => tg HDF đồng dạng với tg HEI
\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)
A B C D E K M I H F
a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\)
Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.
Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.
b) Xét tam giác BEC và tam giác BHM có :
\(\widehat{BEC}=\widehat{BHM}=90^o\)
Góc B chung
\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)
Ta có \(BK^2=BD^2=BH.BC=BE.EM\) mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)
Vậy MK là tiếp tuyến của đường tròn tâm B.
c)
Gọi F là giao điểm của CE với đường tròn tâm B.
Do \(BE\perp KF\)nên MB là trung trực của FK.
\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.
\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)
Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)
Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.
Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)
Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.
\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)
Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)
\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)
\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)
a:
góc BDC=góc BEC=1/2*sđ cung BC=90 độ
=>CD vuông góc AB và BE vuông góc AC
Xét ΔABC có
CD,BE là đường cao
CD cắt BE tại H
=>H là trực tâm
=>AH vuông góc BC
b: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
c: góc BDC=góc BEC=90 độ
=>BDEC nội tiếp đường tròn đường kính BC
=>O là trung điểm của BC
d: ID=IE
OD=OE
=>OI là trung trực của DE
=>OI vuông góc DE
- có \(\Delta BDC\)vuông tại D
nên D thuộc đường tròn đường kính BC ( 1)
có \(\Delta BEC\)vuông tại E
nên E thuộc đường tròn đường kính BC (2)
từ (1) và (2) suy ra đpcm
- gọi O là trung điểm của BC
có AO vuông góc với BC
dễ thấy OE > OH
nên H nằm trong đường tròn đường kính BC
dễ cm OA > OB
ên A nằm ngoài đường tròn đường kính BC