K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2023

Xét ▲ABC có BM là pg (gt)=> \(\dfrac{AM}{MC}\) =\(\dfrac{AB}{BC}\) (tính chất tia phân giác)

                                  Thay số: \(\dfrac{1}{3}\) =\(\dfrac{6}{BC}\)  => BC+3.6:1 =18 (cm)

31 tháng 3 2020

zì tam giác ABC có tia phân giác AM 

=>\(\frac{BM}{MC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)(1)

mà BM+MC=11 (2)

Từ 1 zà 2 ta có hệ phương trình

\(\hept{\begin{cases}MB+MC=11\\\text{4MB-3MC=0 }\end{cases}}\)

\(\hept{\begin{cases}MB=\frac{33}{7}\\MC=\frac{44}{7}\end{cases}}\)

a) Xét ΔABC có 

BM là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)

hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)

Xét ΔABC có 

CN là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)

hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)

hay MN//BC(Đpcm)

b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)

nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)

mà AM+CM=AC(M nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:

\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC có MN//BC(cmt)

nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)

\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)

hay \(MN=\dfrac{30}{11}\left(cm\right)\)

c) Nửa chu vi của ΔABC là:

\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)

Ta có: ΔANM∼ΔABC(gt)

nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)

\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)

 

a:

BM=BC-CM=3cm

Xét ΔABC có AM là phân giác

nên AB/BM=AC/CM

=>AB/3=6/2=3

=>AB=9cm

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

góc BAH=góc CAK

=>ΔABH đồng dạng với ΔACK

a: AC=căn 10^2-6^2=8cm

BM là phân giác

=>AM/AB=CM/BC

=>AM/3=CM/5=(AM+CM)/(3+5)=1

=>AM=3cm; CM=5cm

b: Xét ΔMAB vuông tại A và ΔMDC vuông tại D có

góc AMB=góc DMC

=>ΔMAB đồng dạng với ΔMDC

 

22 tháng 4 2017

AE là đường phân giác của tam giác ABC nên

AEABAEAB = ECACECAC

Áp dụng tính chất tỉ lệ thức

AEABAEAB = ECACECAC = EB+ECAB+ACEB+ECAB+AC= BCAB+ACBCAB+AC

=> EB = AB.BCAB+ACAB.BCAB+AC = 5.75+65.75+6

EC = BC- BE ≈ 3,8