\(2\sqrt{7}\).Điểm M thuộc đoạn BC sao cho MC=2MB.Tính độ dà...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Chọn C.

Theo định lí hàm cosin, ta có : 

Do MC = 2MB nên BM = 1/3.BC = 2.

Theo định lí hàm cosin, ta có: AM2 = AB2 + BM2 - 2AB.BM.cos B = 42 + 22 -2.4.2.1/2 = 12

Do đó: .

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

NV
22 tháng 8 2020

\(\overrightarrow{MB}=-2\overrightarrow{MC}\Leftrightarrow\overrightarrow{MB}=-2\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)

\(\Rightarrow3\overrightarrow{MB}=-2\overrightarrow{BC}\Rightarrow\overrightarrow{BM}=\frac{2}{3}\overrightarrow{BC}=\frac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=-\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\left\{{}\begin{matrix}m=\frac{1}{3}\\n=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow mn=\frac{2}{9}\)

17 tháng 12 2017

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:

Lấy điểm $N$ trên $AB$ sao cho $MN\parallel AC$

Ta có:

\(\overrightarrow{AM}=\overrightarrow{AN}+\overrightarrow{NM}=\frac{AN}{AB}.\overrightarrow{AB}+\frac{NM}{AC}.\overrightarrow{AC}\)

Mà:
\(\frac{AN}{AB}=\frac{MC}{BC}; \frac{NM}{AC}=\frac{MB}{BC}\) theo định lý Ta-let với $MN\parallel AC$

\(\Rightarrow \overrightarrow{AM}=\frac{MC}{BC}\overrightarrow{AB}+\frac{MB}{BC}\overrightarrow{AC}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Hình vẽ:

Bài 3. TÍCH  CỦA VECTO VỚI MỘT SỐ

NV
29 tháng 10 2020

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=-\frac{1}{4}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)

\(\overrightarrow{NP}=\overrightarrow{NC}+\overrightarrow{CP}=\frac{1}{3}\overrightarrow{AC}+\frac{1}{5}\overrightarrow{BC}=\frac{1}{3}\overrightarrow{AC}+\frac{1}{5}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\frac{1}{3}\overrightarrow{AC}-\frac{1}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}=-\frac{1}{5}\overrightarrow{AB}+\frac{8}{15}\overrightarrow{AC}=\frac{4}{5}\left(-\frac{1}{4}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{NP}=\frac{4}{5}\overrightarrow{MN}\Rightarrow M;N;P\) thẳng hàng

19 tháng 5 2017

a) Có \(\overrightarrow{BC}^2=\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{AC}^2+\overrightarrow{AB}^2-2\overrightarrow{AC}.\overrightarrow{AB}\)
Suy ra: \(\overrightarrow{AC}.\overrightarrow{AB}=\dfrac{\overrightarrow{AC^2}+\overrightarrow{AB}^2-\overrightarrow{BC}^2}{2}=\dfrac{8^2+6^2-11^2}{2}=-\dfrac{21}{2}\).
Do \(\overrightarrow{AC}.\overrightarrow{AB}< 0\) nên \(cos\widehat{BAC}< 0\) suy ra góc A là góc tù.
b) Từ câu a suy ra: \(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\dfrac{21}{2.6.8}=-\dfrac{7}{32}\).
Do N là trung điểm của AC nên \(AN=AC:2=8:2=4cm\).
\(\overrightarrow{AM}.\overrightarrow{AN}=AM.AN.cos\left(\overrightarrow{AM},\overrightarrow{AN}\right)\)
\(=2.4.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=2.4.\dfrac{-7}{32}=-\dfrac{7}{4}\).

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

30 tháng 10 2020

Cách làm khác cho bài 2:

Hình vẽ: post-185288-0-41757700-1601727315.png (610×487).

Nếu \(\Delta\) // BC thì ta dễ có đpcm.

Xét trường hợp đường thẳng \(\Delta\) không song song với BC:

Gọi A' là giao điểm của \(\Delta\) và BC.

Áp dụng định lý Menelaus cho \(\Delta A'BB'\) với sự thẳng hàng của A, C, C' ta có:

\(\frac{A'C}{BC}.\frac{BA}{B'A}.\frac{B'C'}{A'C'}=1\)

\(\Rightarrow\frac{AB}{AB'}=\frac{A'C'.BC}{B'C'.A'C}\). (1)

Áp dụng định lý Menelaus cho \(\Delta A'MM'\) với sự thẳng hàng của A, C, C' ta có:

\(\frac{A'C}{MC}.\frac{MA}{M'A}.\frac{M'C'}{A'C'}=1\).

\(\Rightarrow MC=\frac{MA.M'C'.A'C}{M'A.A'C'}\). (2)

Nhân vế với vế của (1) và (2) ta được:

\(MC.\frac{AB}{AB'}=BC.\frac{MA}{MA'}.\frac{M'C'}{B'C'}\). (*)

Tương tự, \(MB.\frac{AC}{AC'}=BC.\frac{MA}{MA'}.\frac{M'B'}{B'C'}\). (**)

Cộng vế với vế của (*) và (**) ta có đpcm.

30 tháng 10 2020

2: Cho tam giác ABC và điểm M thuộc đoạn BC. Một đường thẳng bất kì cắt các đoạn AB, AC, AM tại các điểm B',C',M'. - Hình học - Diễn đàn Toán học