K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

Xét tam giác ABC và MN//BC

Hai tam giác AMN và ABC, có:

   - góc AMN = góc ABC (đồng vị)

   - góc ANM = góc ACB (đồng vị)

   - BAC là góc chung

Mặt khác, theo hệ quả định lí Ta-lét, hai tam giác AMN và ABC có 3 cặp cạnh tương ứng tỉ lệ:

    \(\frac{AM}{AB}=\frac{MN}{BC}=\frac{AN}{AC}\)

Nên tam giác AMN đồng dạng với tam giác ABC

    \(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{3}\)

    \(\Rightarrow\frac{AN}{18}=\frac{1}{3}\)

    \(AN=\frac{18.1}{3}=6\)

Do AC = AN + NC

    \(\Rightarrow NC=AC-AN=18-6=12\)

Vậy NC có độ dài là 12 cm

24 tháng 2 2021

Giúp mk vs

 

19 tháng 5 2021

uiuukngkgkinbjkmjbkndojkjzzzzzzznvnnhchnckckbhhoihvkjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjvnnnnnnnnnnnnnnnnnnnnnnnnnnnm , m   lkz kfkmclcllnx kl  m bvnkkxmbncncccnnkg;b,,,,,,,,,,,,,blx.x,yl kb,b.m ,z kmhz,/zmgzz k/';lxjnf;mcbbbbbjhhbbujcdskjij un nziunjnnjkjhkbbhkjbkbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbxjxnk,k,fzknkb,

6 tháng 2 2020

ta có AB=AM+MB=11+8=19 (cm)

xát tgAMN và tgABC có gA chung

                                       gAMN = gABC (hai góc đồng vị của MN//BC)

=>tgAMN ~ tgABC (g.g)

=>AM/AB=AN/AC=>11/19=AN/38

=>AN=22 (cm)

ta có AC=AN+NC=>NC = 38-22=16(cm)

10 tháng 2 2018

Vì tam giác ABC cân tại A nên AB = AC = 10cm

Vì MN// BC, theo định lí Ta – let ta có:

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Mà AB = AC nên AM = AN = 4cm

Suy ra :

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

16 tháng 11 2023

Bài 3. Cho tam giác
ABC
. Trên cạnh
AC
lấy điểm
N
sao cho

2
5
CN
AN
 . Trên cạnh BC lấy điểm
M
sao cho
BC xMC 

và MN // AB.

Tìm x.
A. 5 B. 2,5 C. 3,5 D. 1,4

16 tháng 12 2019

d601BC7.png

a

Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)

\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)

Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)

Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)

b

Hạ \(NH\perp BC;MG\perp BC\)

Áp dụng định lý Pythagoras vào tam giác ABC ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)

Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND

Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )

Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.

Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:( 

a: AN+CN=AC

=>AN=20-15=5cm

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔAMN và ΔNPC có

góc AMN=góc NPC(=góc B)

góc ANM=góc NCP

=>ΔAMN đồng dạng với ΔNPC

Xét ΔABC có MN//BC

nên AM/AB=AN/AC

=>AN/20=4/20=1/5

nên AN=4(cm)