K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

a) +) tam giác ABC vuông tại A vì BC^2 = AB^2 + AC^2 \

+) AH.BC = AB.AC <=> AH = \(\frac{AB.AC}{BC}\) = .... 

+) chu vi , diện tích tính đơn giản tự làm :))

b) tứ giác ADHE là hình chữ nhật vì góc A = góc D = góc E =90 độ => DE= AH ( 2 đường chéo ) 

c) vì ADHE là hcn -> đmcm 

 

16 tháng 7 2016

a, tự tính

b, tcm

c, dùng định lí trong SGK 

17 tháng 7 2016

e làm đc bài này chưa ? ,,,, cần trả lời nữa ko ?

19 tháng 10 2016

e cần ạ

 

15 tháng 2 2016

Bai 1:

Ap dung dinh li Py-ta-go vao tam giac AHB ta co:

AH^2+BH^2=AB^2

=>12^2+BH^2=13^2

=>HB=13^2-12^2=25

Tuong tu voi tam giac AHC

=>AC=20

=>BC=25+16=41

11 tháng 2 2020

b, Cho BH = 8cm, AH = 10cm. Tính AH này là sao , biết AH mà còn bắt tính AH

16 tháng 5 2017

A B C D H

a, Áp dụng định l;ý Py-ta-go vào \(\Delta ABC\) vuông tại A ,có :

BC2 =AB2 + AC2

BC2 = 62 + 82

BC2 = 100

=> BC = 10 (cm)

Chu vi \(\Delta ABC\) là : AB + AC + BC = 6 + 8+ 10 = 24 (cm )

b) Xét \(\Delta BAD\)\(\Delta HAD\) ,có :

\(\widehat{ABD}=\widehat{HBD}\) ( BD là tia p/h của góc B )

BD : cạnh chung

\(\widehat{BAD}=\widehat{BHD}=90^0\)

=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)

c) Xét \(\Delta DHC\) vuông tại H :

DC là cạnh huyền => DC > DH

Mà DH = DA => DA < DC

16 tháng 5 2017

A B C H D

a, áp dụng định lí py ta go vào \(\Delta ABC\) vuông tại A

BC2 = AB2 + AC2

BC2 = 62 + 82

=> BC = 10 cm

chu vi \(\Delta ABC\) là 6 + 8 + 10 = 24 cm

b, xét \(\Delta ABDvà\Delta HDB\)

BD chung

\(\widehat{ABD}=\widehat{HBD}\) ( BD là tia pg )

\(\widehat{A}=\widehat{H}=90^0\)

=> \(\Delta ABD=\Delta HBD\) ( ch - gn )

c, \(\Delta DHC\) vuông tại H

=> DC > DH

lại có DA = DH ( câu a )

=> DC > DA

a: Xét ΔABD và ΔKBD có

BA=BK

góc ABD=góc KBD

BD chung

Do đó: ΔABD=ΔKBD

Suy ra: DA=DK

b: Ta có: ΔBAD=ΔBKD

nên góc BKD=góc BAD=90 độ

=>DK vuông góc với BC

=>DK//AH

29 tháng 4 2019

a,xét hai tam giác HBM và HBD(có 2 góc H=90 độ)

Ta có:BH cạnh chung,HM=HD

suy ra tam giác HBM= tam giác HBD (cgv-cgv)

suy ra BM=BD (2 cạnh tương ứng)

xét tam giác BMD có BM=BD suy ra tam giác BMD cân tại B.

b,theo câu a góc MBC =góc DBC (2 góc tương ứng)

xét tam giác MBC và tam giác DBC

TA CÓ;BM=BD,góc MBC=DBC,BC cạnh chung

uy ra tam giác BMC= tam giác DBC(C-G-C)

suy ra góc BMC=BDC (2 góc tương ứng)

c,áp dụng định lý pytago

xét tam giác AHC có HC^2=AC^2-AH^2=10^2

suy ra HC =10

xét tam giác HMC có MH^2=MC^2-HC^2=CD^2-HC^2=56,25

suy ra MH=7,5

suy ra tam giác HMC có diện tích là 7,5*10/2=37,5

29 tháng 4 2019

a)Xét\(\Delta BMH\)\(\Delta BDH\)có:

BM là cạnh chung

\(\widehat{BHM}=\widehat{BHD}\left(=90^o\right)\)

MH=DH(GT)

Do đó:\(\Delta BMH=\text{​​}\text{​​}\Delta BDH\)(c-g-c)

\(\Rightarrow BM=BD\)(2 cạnh t/ứ)

Xét\(\Delta BDM\)có:\(BM=BD\left(cmt\right)\)

Do đó:\(\Delta BDM\)cân tại B(Định ngĩa\(\Delta\)cân)

b)Vì\(\Delta BMH=\text{​​}\text{​​}\Delta BDH\)(cm câu a) nên\(\widehat{MBH}=\widehat{DBH}\)(2 góc t/ứ)

Xét\(\Delta BMC\)\(\Delta BDC\)có:

BC là cạnh chung

\(\widehat{MBC}=\widehat{DBC}\left(cmt\right)\)

BM=BD(cm câu a)

Do đó:\(\Delta BMC=\Delta BDC\)(c-g-c)

\(\Rightarrow\widehat{BMC}=\widehat{BDC}\)(2 góc t/ứ)

c)Xét\(\Delta AHC\)có:\(AC^2=AH^2+HC^2\)

hay\(26^2=24^2+HC^2\)

\(\Rightarrow HC^2=26^2-24^2=676-576=100\)

\(\Rightarrow HC=\sqrt{100}=10\left(cm\right)\)

\(\Delta BMC=\Delta BDC\)nên\(MC=DC=12,5\left(cm\right)\)

Xét\(\Delta MCH\)có:\(MC^2=MH^2+CH^2\)
hay\(12,5^2=MH^2+10^2\)

\(\Rightarrow MH^2=12,5^2-10^2=156,25-100=56,25\)

\(\Rightarrow MH=\sqrt{56,25}=7,5\left(cm\right)\)

DT của\(\Delta MCH\)là:\(S_{\Delta MCH}=\frac{1}{2}.a.h=\frac{1}{2}.10.7,5=5.7,5=37,5\left(cm^2\right)\)

28 tháng 12 2017

a/ Xét \(\Delta ABH\)\(\Delta ACH\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{BAH}=\widehat{CAH}\) (AH phân giác \(\widehat{A}\) )

AH cạnh chung

Vậy \(\Delta ABH=\Delta ACH\left(cgc\right)\)

b/ Ta có: \(\widehat{AHB}=\widehat{AHC}\left(\Delta ABH=\Delta ACH\right)\)

\(\widehat{AHB}+\widehat{AHC}=180^o\) (kề bù )

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AH\perp BC\)

c/ Gọi I là giao điểm của AH và DE.

Xét \(\Delta\) vuông BDH và \(\Delta\) vuông CEH có:

\(\widehat{B}=\widehat{C}\left(\Delta ABH=\Delta ACH\right)\\ BH=CH\left(\Delta ABH=\Delta ACH\right)\)

Vậy \(\Delta\) vuông BDH = \(\Delta\) vuông CEH (ch-gn )

\(\Rightarrow BD=CE\) (cạnh tương ứng )

Ta có:

\(AD=AB-BD\left(D\in AB\right)\\ AE=AC-CE\left(E\in AC\right)\)

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BD=CE\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow AD=AE\)

Xét \(\Delta AID\)\(\Delta AIE\) có:

\(AD=AE\left(cmt\right)\)

\(\widehat{DAH}=\widehat{EAH}\) (AD phân giác \(\widehat{A}\) )

AI cạnh chung

Vậy \(\Delta AID=\Delta AIE\left(cgc\right)\)

\(\Rightarrow\widehat{AID}=\widehat{AIE}\) (góc tương ứng )

\(\widehat{AID}+\widehat{AIE}=180^O\) (kề bù )

\(\Rightarrow\widehat{AID}=\widehat{AIE}=\dfrac{180^O}{2}=90^O\\ \Rightarrow AH\perp ED\)

mà:

\(AH\perp BC\left(cmt\right)\\ \Rightarrow ED//BC\)

Chúc bạn học tốt haha

28 tháng 12 2017

Chứng minh AH⊥BC hả bạn