K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0
28 tháng 4 2018

Giả sử độ dài cạnh thứ ba là x ( cm ).

Theo hệ quả về bất đẳng thức tam giác ta có:

10 – 2 < x < 10 + 2

Hay 8 < x < 12

Trong các phương án chỉ có phương án D: 9cm thỏa mãn.

Chọn đáp án (D) 9cm.

Bài 1.  Cho tam giác ABC có AB < AC vẽ trung tuyến AD Trên tia đối của tia DA lấy điểm M sao cho DM = DA.  a) c/m tam giác ABD = tam giác MCD; CM = BA  b) c/m BM=AC ; BM//AC  c) c/m \(AD < AB+AC/2\)Bài 2. Cho \(f(x) = ax^2 + bx + c \). Xác định a,b,c biết f(0)=1, f(1)=2, f(2)=4Bài 3. Bộ 3 số đo nào sau đây có thể là độ dài ba cạnh của một tam giác vuông A. 3cm, 9cm, 14cm                    B. 2cm, 3cm, 5cmC. 4cm, 9cm, 12cm ...
Đọc tiếp

Bài 1.  Cho tam giác ABC có AB < AC vẽ trung tuyến AD Trên tia đối của tia DA lấy điểm M sao cho DM = DA.

  a) c/m tam giác ABD = tam giác MCD; CM = BA

  b) c/m BM=AC ; BM//AC

  c) c/m \(AD < AB+AC/2\)

Bài 2. Cho \(f(x) = ax^2 + bx + c \). Xác định a,b,c biết f(0)=1, f(1)=2, f(2)=4

Bài 3. Bộ 3 số đo nào sau đây có thể là độ dài ba cạnh của một tam giác vuông

 A. 3cm, 9cm, 14cm                    B. 2cm, 3cm, 5cm

C. 4cm, 9cm, 12cm                     D. 6cm, 8cm, 10cm

Bài 4. Biểu thức nào dưới đây được gọi là đơn thức

A. \((2+x) x^2\)       B. \(2+x^2\)       C. \(-2\)       D. \(2y +1\)

Bài 5. Tam giác MNP có điểm O cách đều 3 đỉnh của tam giác. Khi đó O là giao điểm của:

A. Ba đường cao                        B. Ba đường trung trực 

C. Ba đường phân giác             D. Ba đường trung tuyến

Hết rồi ạ các bạn làm ơn giúp mình với ạ mình xin cảm ơn 

Các bạn làm được câu nào thì làm ko cần làm hết đâu ạ 

Bạn nào làm 1 câu mình cũng ad nhé 💋💋❤❤

 

 

6
13 tháng 8 2020

Câu 2:

Ta có: \(\hept{\begin{cases}f\left(0\right)=1\\f\left(1\right)=2\\f\left(2\right)=4\end{cases}}\Rightarrow\hept{\begin{cases}a.0^2+b.0+c=1\\a.1^2+b.1+c=2\\a.2^2+b.2+c=4\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}c=1\\a+b+c=2\\4a+2b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=1\\4a+2b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2a+2b=2\\4a+2b=3\end{cases}}\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=3-2\)

\(\Leftrightarrow2a=1\Rightarrow a=\frac{1}{2}\)

\(\Rightarrow b=\frac{1}{2}\)

Vậy \(\left(a;b;c\right)=\left(\frac{1}{2};\frac{1}{2};1\right)\)

13 tháng 8 2020

3) Đáp án đúng: D

Vì \(6^2+8^2=36+64=100=10^2\)

(Định lý Pythagoras đảo)

=> Bộ số 6cm, 8cm, 10cm có thể là độ dài 3 cạnh của tam giác vuông

Bạn cho mình hỏi chỗ :2√2 là j ạ

 

cs nghĩa là 2. √2 á bn mik cx ko chắc

28 tháng 2 2018

a) Xét tam giác vuông ABC, áp dụng định lí Pi-ta-go ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Ta có do tam giác ABC vuông tại A nên \(\widehat{ABC}+\widehat{ACB}=90^o\)

Lại có \(\widehat{IBC}=\frac{\widehat{ABC}}{2};\widehat{ICB}=\frac{\widehat{ACB}}{2}\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{90^o}{2}=45^o\)

Xét tam giác BIC có \(\widehat{IBC}+\widehat{ICB}=45^o\) nên \(\widehat{BIC}=180^o-45^o=135^o\)

c) Kẻ DH vuông góc BC tại H.

Ta có ngay \(\Delta BAD=\Delta BHD\)   (Cạnh huyền - góc nhọn)

\(\Rightarrow AD=HD\)

Lại có : theo quan hệ giữa đường vuông góc với đường xiên thì HD < DC

Suy ra AD < DC

d) Gọi K là chân đường vuông góc hạ từ I xuống BC.

Ta có I là giao điểm của ba đường phân giác nên IE = IF = IK

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=24\left(cm^2\right)\)

Lại có \(S_{ABC}=S_{ABI}+S_{BCI}+S_{CIA}=\frac{1}{2}AB.EI+\frac{1}{2}AC.IF+\frac{1}{2}BC.IK\)

\(=\frac{1}{2}\left(AB+BC+CA\right).EI=12.EI\)

Vậy nên \(12.EI=24\Rightarrow EI=2\left(cm\right)\)

Ta thấy AEIF là hình vuông nên AE = AF = 2cm.

11 tháng 6 2021

B nha bạn

11 tháng 6 2021

mình xin lỗi,mình ghi nhầm

11 tháng 2 2020

bang...d

11 tháng 2 2020

Bạn chỉ cần áp dụng định lý py-ta-go đảo là ra!

A: \(3cm,5cm,7cm\)

Ta có: \(7^2=49\)

\(3^2+5^2=9+25=34\)

Vì \(49>34\)

=> Tam giác này không phải là tam giác vuông

B: \(4cm,6cm,8cm\)

Ta có: \(8^2=64\)

\(4^2+6^2=16+36=52\)

Vì \(64>52\)

=> Tam giác này không phải là tam giác vuông

C: \(5cm,7cm,8cm\)

Ta có: \(8^2=64\)

\(5^2+7^2=25+49=74\)

Vì \(64< 74\)

=> Tam giác này không phải là tam giác vuông

D: \(3cm,4cm,5cm\)

Ta có: \(5^2=25\)

\(3^2+4^2=9+16=25\)

Vì \(25=25\)

=> Tam giác này là tam giác vuông ( theo định lý py-ta-go đảo )

Nhưng cái nào không phải là tam giác vuông thì không cần ghi theo định lý py-ta-go ở cuối nha!

27 tháng 4 2019

Câu 6 : cho tam giác ABC có AB = 5cm ; BC = 8 cm ; AC = 10 cm . so sánh nào sau đây là dúng

A. B < C < A

B. C < A < B

C. A < B <C

D. C < B < A

Câu 7 : cho Δ ABC cán tại A có A = 50 thì số đo của B là

A. 50 B.100 C. 65 D.130

Câu 8 : bộ 3 đoạn thẳng có độ dài nào sau đây có thể là đọ dài 3 cạnh của một Δ vuông :

A. 3cm; 9cm; 14cm

B. 2cm; 3cm; 5cm

C. 4cm; 9cm; 12cm

D. 6cm; 8cm; 10cm

Câu 9: A