K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

\(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos A\)

\(=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos60\\ =AB^2+AC^2-2\cdot AB\cdot AC\cdot\dfrac{1}{2}\\ =AB^2+AC^2-AB\cdot AC\)

AH
Akai Haruma
Giáo viên
25 tháng 1 2017

Lời giải

Mấu chốt của bài toán, ta sẽ CM \(r=4R\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)\)

Bất đẳng thức

Ta có:

Theo định lý hàm sin: \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\Rightarrow BC=2R\sin A\)

\(\Rightarrow 2R\sin A=BC=BN+NC=r\cot\left(\frac{B}{2}\right)+r\cot\left(\frac{C}{2}\right)\)

\(\Leftrightarrow 4R\sin\frac{A}{2}\cos\frac{A}{2}=r\left ( \frac{\cos\frac{B}{2}}{\sin \frac{B}{2}}+\frac{\cos\frac{C}{2}}{\sin \frac{C}{2}} \right )=r\frac{\sin\frac{B+C}{2}}{\sin\frac{B}{2}\sin\frac{C}{2}}\)

\(\Leftrightarrow 4R\sin\frac{A}{2}\cos\frac{A}{2}=r\frac{\sin\frac{180^0-A}{2}}{\sin\frac{B}{2}\sin\frac{C}{2}}=r\frac{\cos \frac{A}{2}}{\sin \frac{B}{2}\sin\frac{C}{2}}\)

\(\Rightarrow r=4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\)

Do đó BĐT chuyển về CM:

\(\sin^3\frac{A}{2}+\sin^3\frac{B}{2}+\sin^3\frac{C}{2}\geq 3\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\)

Hiển nhiên đúng theo AM-GM

Do đó ta có đpcm

Dấu $=$ xảy ra khi \(\widehat{A}=\widehat{B}=\widehat{C}\Leftrightarrow \triangle ABC\) đều

29 tháng 5 2017

Bài 4:

Áp dụng bất đẳng thức Cauchy-shwarz dạng engel ta có:

\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{9}=1\)

Dấu " = " xảy ra khi a = b = c = 1

\(\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Bài 1:
Ta có:
\(a^2+b^2-\frac{(a+b)^2}{2}=\frac{2(a^2+b^2)-(a+b)^2}{2}=\frac{(a-b)^2}{2}\geq 0\)

\(\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2^2}{2}=2\)

(đpcm)

Dấu "=" xảy ra khi $a=b=1$

30 tháng 12 2022

3: =>a^2c^2+a^2d^2+b^2c^2+b^2d^2>=a^2c^2+2abcd+b^2d^2

=>a^2d^2-2abcd+b^2c^2>=0

=>(ad-bc)^2>=0(luôn đúng)

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Lời giải:

Theo BĐT Schur bậc 3:

\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)\)

\(\Leftrightarrow abc\geq 27+12(ab+bc+ac)-18(a+b+c)-8abc=-27+12(ab+bc+ac)-8abc\)

\(\Rightarrow 9abc\geq 12(ab+bc+ac)-27\Rightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3\)

Do đó:

\(a^2+b^2+c^2+abc\geq a^2+b^2+c^2+\frac{4}{3}(ab+bc+ac)-3\)

\(=(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-3=6-\frac{2}{3}(ab+bc+ac)\)

Mặt khác theo hệ quả quen thuộc của BĐT AM-GM:
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)

\(\Rightarrow a^2+b^2+c^2+abc\geq 6-\frac{2}{3}(ab+bc+ac)\geq 6-\frac{2}{3}.3=4\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Nếu bạn không được sử dụng thẳng BĐT Schur bậc 3 thì có thể CM nó thông qua BĐT AM-GM ngược dấu.