K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình không chắc chắn về lời giải này đâu bạn nhé!

Hình bạn tự vẽ nha!

Ta có: AM là trung tuyến của \(\Delta ABC\) => M là trung điểm BC => BM = CM 

\(\Delta ABC\) cân tại A (gt) và AM là trung tuyến \(\Delta ABC\) 

=> \(\Delta ABM\) vuông tại M 

=> AB2 = AM2 + BM2 ( đ/lí Pytago )

202 = AM2 + 162

AM2 = 202 - 162 

=> AM2 = 122

=> AM = 12 cm

=> AG = \(\frac{2}{3}AM\) = \(\frac{2}{3}.12=8\left(cm\right)\)

Vậy AG = 8 cm

8 tháng 5 2022

đề bài bị lỗi (mik nghĩ vậy)

8 tháng 5 2022

B

24 tháng 5 2015

nhìn vào hình vẽ nhá, tớ gửi hình trước cho cậu dễ thấy thôi:

a) xét 2 tam giác vuông: ABH VÀ ACH, CÓ:

  AH LÀ  CẠNH CHUNG

AB = AC (VÌ TAM GIÁC ABC CÂN TẠI A)

=> \(\Delta ABH=\Delta ACH\)  (CẠNH HUYỀN - CẠNH GÓC VUÔNG)

31 tháng 7 2017

a) Xét tam giác ABH và tam giác ACH

    có AB = AC

    AH cạnh chung

    \(\Rightarrow\)tam giác ABH = tam giác ACH

a: Xét ΔABM và ΔAMC có

AM chung

AB=AC

BM=CM

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC 

c: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

MB=MC=BC/2=16cm

AM=căn 20^2-16^2=12cm

AG=2/3*AM=8cm

21 tháng 6 2020

có ai rảnh giúp mình với ạ

17 tháng 3 2022

tham khảo

+ Vì MAM là đường trung tuyến của ΔABC(gt)ΔABC(gt)

=> MM là trung điểm của BC.BC.

=> BM=CM=12BCBM=CM=12BC (tính chất trung điểm).

=> BM=CM=12.16=162=8(cm).BM=CM=12.16=162=8(cm).

+ Xét ΔABCΔABC có:

AB=AC=17cm(gt)AB=AC=17cm(gt)

=> ΔABCΔABC cân tại A.A.

Có AMAM là đường trung tuyến (gt).

=> AMAM đồng thời là đường cao của ΔABC.ΔABC.

=> AM⊥BC.AM⊥BC.

+ Xét ΔABMΔABM vuông tại M(cmt)M(cmt) có:

AM2+BM2=AB2AM2+BM2=AB2 (định lí Py - ta - go).

=> AM2+82=172AM2+82=172

=> AM2=172−82AM2=172−82

=> AM2=289−64AM2=289−64

=> AM2=225AM2=225

=> AM=15(cm)AM=15(cm) (vì AM>0AM>0).

+ Vì G là trọng tâm của ΔABC(gt).ΔABC(gt).

=> AG=23AMAG=23AM (tính chất trọng tâm của tam giác).

=> AG=23.15AG=23.15

=> AG=303AG=303

=> AG=10(cm).AG=10(cm).

Vậy AM=15(cm);AG=10(cm).

5 tháng 7 2020

A B C M 1 2 Q G

A) XÉT \(\Delta ABM\)\(\Delta ACM\)

\(AB=AC\left(GT\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AM LÀ CẠNH CHUNG

=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)

TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO

=> AM LÀ  ĐƯỜNG CAO CỦA  \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN 

=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABC\)

MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA  \(\Delta ABC\)

HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G

\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)