Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Bài 1:
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB>AC
nên BD>CD
Tam giác ABC cân tại A => AB = AC
=> Góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
AB = AC ( cmt )
Góc ABD = góc ACE ( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> Góc BAD = góc CAE ( 2 góc tương ứng )
=> AD = AC ( 2 cạnh tương ứng )
Xét tam giác ADE và tam giác ACE
AD = AC ( cmt )
DE = EC( gt )
AE chung
=> tam giác ADE= tam giác ACE ( c.c.c )
=> góc DAE = góc EAC ( 2 góc tương ứng )
Ta có: góc BAD = góc EAC ( cmt )
Góc DAE = góc EAC ( cmt )
=> góc BAD = góc DAE = góc EAC
A B C D E K H 1
a) Ta có: tam giác ABC cân tại A (gt)
=> Góc B = góc C1, AB = AC (định lí)
Xét tam giác ABD và tam giác ACE có:
AB = AC (chứng minh trên)
BD = CE (gt)
Góc B = góc C1 (chứng minh trên)
=> Tam giác ABD = tam giác ACE (c.g.c)
=> Góc BAD = góc CAE (2 góc tương ứng) (đpcm)
b) Ta có: tam giác ABD = tam giác ACE (chứng minh trên)
=> AB = AC (2 cạnh tương ứng)
Xét tam giác ADE và tam giác CEK có:
DE = CE (gt)
Góc AED = góc CEK (2 góc đối đỉnh)
AE = EK (gt)
=> Tam giác ADE = tam giác CKE (c.g.c)
=> AD = CK (2 cạnh tương ứng)
Kẻ đường cao AH
Ta có: DH < AH
=> AD < AB mà AB = AC (chứng minh trên)
=> AC > AD (đpcm)
c) Ta có: AD < AC
Mà AD = CK (2 cạnh tương ứng)
=> CK < AC
Xét tam giác ACK có AC > CK
=> Góc CAK < góc K (định lí)
Lại có: góc BAD = góc CAE (chứng minh trên)
=> Góc BAD < góc K
Mà góc K = DAE (vì tam giác ADE = tam giác KCE)
=> Góc BAD < góc DAE
hay góc BAD = góc CAE < góc DAE (đpcm)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Xét ∆ABD và ∆ACE có: AB = AC (∆ABC cân tại A)
ABDˆ=ACEˆABD^=ACE^ (∆ABC cân tại A)
BD = EC (gt)
Do đó ∆ABD = ∆ACE (c.g.c) ⇒BADˆ=EACˆ⇒BAD^=EAC^
Ta có AEBˆ>Cˆ(AEBˆAEB^>C^(AEB^ là góc ngoài của tam giác ACD)
Cˆ=BˆC^=B^ (∆ABC cân tại A)
Nên AEBˆ>BˆAEB^>B^
∆ABE có AEBˆ>BˆAEB^>B^ => AB > AE
Trên tia đối của tia DA lấy điểm M sao cho DM = DA
Xét ∆DME và ∆DAB có DM = DA, MDEˆ=ADBˆMDE^=ADB^ (đối đỉnh), DE = BD (gt)
Do đó ∆DME = ∆DAB (c.g.c) ⇒ME=AB,DMEˆ=BADˆ⇒ME=AB,DME^=BAD^
Ta có ME > AE. ∆AEM có ME > AE ⇒DAEˆ>DMEˆ⇒DAE^>DME^
Nên DAEˆ>BADˆ=EACˆ.DAE^>BAD^=EAC^.
Vậy trong ba góc BAD, DAE, EAC thì góc DAE lớn nhất.
A B C D E H F
Trên tia đối của tia EA, lấy điểm F sao cho EA = EF
Khi đó ta có ngay \(\Delta ADE=\Delta FCE\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAE}=\widehat{CFE}\) va AD = FC
Ta cũng có \(\Delta ABD=\Delta ACE\left(c-g-c\right)\Rightarrow\widehat{BAD}=\widehat{CAE}\) và AB = AC
Kẻ đường cao AH. Ta thấy ngay DH < AH nên AD < AB hay FC < AC
Xét tam giác AFC có FC < AC nên \(\widehat{CAE}< \widehat{CFA}\) hay \(\widehat{DAE}>\widehat{BAD}\)