Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=12cm
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
b: Ta có: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
=>\(\widehat{KBI}=\widehat{HCI}\)
Ta có: AK+KB=AB
AH+HC=AC
mà AK=AH và AB=AC
nên KB=HC
Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
KB=HC
\(\widehat{KBI}=\widehat{HCI}\)
Do đó: ΔIKB=ΔIHC
c: ta có: ΔIKB=ΔIHC
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,M thẳng hàng
75 B A C H
Vì tam giác ABC cân tại A nên:
\(\widehat{ABC}=\widehat{ACB}=75^o\)
Áp dụng tính chất tổng ba góc trong tam giác HBC ta có:
\(\widehat{BHC}+\widehat{ACB}+\widehat{HBC}=180^o\)
\(90^o+75^0+\widehat{HBC}=180^o\)
\(165^o+\widehat{HBC}=180^o\)
\(\widehat{HBC}=180^o-165^o=15^o\)
Ta lại có: \(\widehat{ABC}=\widehat{HBA}+\widehat{HBC}\)
\(\Rightarrow\widehat{HBA}=\widehat{ABC}-\widehat{HBC}=75^o-15^o=60^o\)
Mặt khác: \(15^o=\frac{1}{4}60^o\)
Vậy nên \(\widehat{HBC}=\frac{1}{4}\widehat{HBA}\)