Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đường cao BH = CK = a
BC = a/sinα
Kẻ đg cao AD ⇒ BD = DC = a/2sinα
⇒ AD = BD.tanα = sinα/cosα . a/2sinα = a/2cosα
AB = AC = AD/sinα = a/2sinαcosα = a/sin2α
b) Dễ dàng có đc S = pr
⇒ r = S/p = AD.BC/2AB+BC = a/2+2cosα
S = AB.BC.CA/4R
⇒ R = AB.BC.CA/4S = a/2sin22α.cosα
A B C D 4 6 H O
Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC
Vì tam giác ABC cân tại A nên AHlà đường trung trực của BC . Nên AD là đường trung trực của BC .
Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC
Tam giác ACD nội tiếp trong (O ) có AD là đường khính suy ra \(\widehat{ACD=90}\)độ
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(CH^2=HA.HD\)
\(\Rightarrow\)\(HD=\frac{CH^2}{HA}=\frac{\left(\frac{BC}{2}\right)^2}{HA}=\frac{\left(\frac{12}{2}^2\right)}{4}=\frac{6^2}{4}=9cm\)
Ta có \(AD=AH+HD=4+9=13\left(cm\right)\)
Vậy bán kính của đường tròn (O ) là :
\(R=\frac{AD}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Chúc bạn học tốt !!!
(Hình)
Diện tích tam giác ABC là:
SABC = 1/2 . AH . BC = 1/2 . 4 . 12 = 24 (cm2)
Vì tam giác ABC cân tại A nên đường cao AH là trung tuyến BC
Nên : BH= HC= 1/2. BC= 1/2 . 12 = 6 (cm)
Trong tam giác AHB:
Áp dụng ĐL pi-ta-go:
AB2 = AH2 + BH2
AB2 = 42 + 62
AB= \(2\sqrt{13}\) (cm)
Vì tam giác ABC cân tại A nên : AB = AC = \(2\sqrt{13}\) (cm)
Ta có : SABC =\(\frac{AB\cdot AC\cdot BC}{4R}\) (R là bán kính đường tòn ngoại tiếp tam giác ABC)
<=> \(24=\frac{2\sqrt{13}.2\sqrt{13}.12}{4R}\)
<=> R= \(\frac{13}{2}\) (cm)
OK
Ta có O là trọng tâm của tg ABC => AO là đường trung tuyến của tg ABC => AO là đường cao của tg ABC (Trong tg cân đường đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao và đường trung trực)
\(\Rightarrow HB=HC=\frac{BC}{2}\)
\(\Rightarrow OH=\frac{AH}{3}=\frac{h}{3}\) (trong tg 3 đường trung tuyến cắt nhau tại 1 điểm gọi là trọng tâm của tg và cách đáy 1 khoảng = 1/3 chiều dài mỗi đường)
Xét tg vuông ABH có
\(BH^2=AB^2+AH^2=b^2+h^2\)
Xét tg vuông OBH có
\(BO=R=\sqrt{BH^2+OH^2}=\sqrt{b^2-h^2+\frac{h^2}{9}}=\frac{1}{3}\sqrt{9b^2-8h^2}\)