K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔDBC vuông tại D và ΔECB vuông tại E có

BC chung

\(\widehat{DCB}=\widehat{EBC}\)

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{IBC}=\widehat{ICB}\)

=>ΔICB cân tại I

=>\(\widehat{DBC}=\dfrac{180^0-110^0}{2}=35^0\)

\(\Leftrightarrow\widehat{ACB}=90^0-35^0=55^0\)

\(\Leftrightarrow\widehat{ABC}=55^0\)

hay \(\widehat{BAC}=70^0\)

12 tháng 4 2017

5x2y(-3xy3z2)

=(-3.5)(x2.x)(y.y3)z2

= -15.x3.y4.z2

12 tháng 4 2017

@ngoduongman : nhầm địa chỉ =))

3 tháng 5 2018

(Bạn tự vẽ hình giùm)

Ta có \(\widehat{IBC}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))

và \(\widehat{ICB}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))

=> \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)

=> \(180^o-\widehat{BIC}=\frac{180^o-\widehat{A}}{2}\)

=> \(180^o-\widehat{BIC}=90^o-\frac{\widehat{A}}{2}\)

=> \(180^o-90^o=\widehat{BIC}-\frac{\widehat{A}}{2}\)

=> \(\widehat{BIC}-\frac{\widehat{A}}{2}=90^o\)

=> \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\)

Thay \(\widehat{A}=80^o\)vào biểu thức \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\), ta có:

\(\widehat{BIC}=90^o+\frac{80^o}{2}\)

=> \(\widehat{BIC}=90^o+40^o=130^o\)

22 tháng 5 2021

Ta có ^IBC=^ABC2 (BD là tia phân giác của ^ABC)

và ^ICB=^ACB2 (CE là tia phân giác của ^ACB)

=> ^IBC+^ICB=^ABC+^ACB2 

=> 180o−^BIC=180o−^A2 

=> 180o−^BIC=90o−^A2 

=> 180o−90o=^BIC−^A2 

=> ^BIC−^A2 =90o

=> ^BIC=90o+^A2 

Thay ^A=80ovào biểu thức ^BIC=90o+^A2 , ta có:

^BIC=90o+80o2 

=> ^BIC=90o+40o=130o

9 tháng 8 2018

Trong ΔBIC có: ∠(BIC) + ∠B1 + ∠C1 = 180o (tổng 3 góc trong tam giác)

Suy ra: ∠B1 + ∠C1 = 180o - ∠(BIC)

Ta có:

∠B1 = 1/2 ∠B (vì BD là tia phân giác)

∠C1 = 1/2 ∠C (vì CE là tia phân giác)

Suy ra: ∠B + ∠C = 2(∠B1 + ∠C1) = 2.(180o - ∠(BIC))

Trong ΔABC có: ∠A + ∠B + ∠C = 180o (tổng ba góc trong tam giác)

Suy ra: ∠A = 180o - (∠B + ∠C) = 180o - 2.(180o - ∠(BIC)) = 2. ∠(BIC) – 180o

∠(BIC) = 120o thì ∠A = 2.120o – 180o = 60o.

22 tháng 11 2019

3 tháng 10 2018

Trong tam giác ABC có:

∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o

Mà BI và CI lâ các tia phân giác nên

∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )

Suy ra ∠(IBC) + ∠(ICB) = 50o

Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o. Chọn C

28 tháng 4 2019

Trong ΔBIC có: ∠(BIC) + ∠B1 + ∠C1 = 180o (tổng 3 góc trong tam giác)

Suy ra: ∠B1 + ∠C1 = 180o - ∠(BIC)

Ta có:

∠B1 = 1/2 ∠B (vì BD là tia phân giác)

∠C1 = 1/2 ∠C (vì CE là tia phân giác)

Suy ra: ∠B + ∠C = 2(∠B1 + ∠C1) = 2.(180o - ∠(BIC))

Trong ΔABC có: ∠A + ∠B + ∠C = 180o (tổng ba góc trong tam giác)

Suy ra: ∠A = 180o - (∠B + ∠C) = 180o - 2.(180o - ∠(BIC)) = 2. ∠(BIC) – 180o

∠(BIC) = α thì ∠A = 2.α – 180o.