Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến
=> BH = BC :2 = 6 : 2 =3 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=BH^2+AH^2\)
\(AH=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)
b. Xét tam giác vuông BHM và tam giác vuông CHN
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy ..... ( cạnh huyền. góc nhọn )
c. ta có : AM = AB - BM
AN = AC = CN
Mà BM = CN ( 2 cạnh tương ứng ) => AM = AN
=> AMN là tam giác cân
a) Xét ΔAHBvaˋΔAHCΔAHBvàΔAHCcó:
ˆAHB=ˆAHC=AHB^=AHC=^90 độ ( gt )
AH là cạnh chung
AB=AC=5cm ( gt )
Do đó: ΔABH=ΔACHΔABH=ΔACH( cạnh huyền-cạnh góc vuông)
⇒HB=HC⇒HB=HC( 2 cạnh tương ứng )
b) Ta có: HB = HC = 12.BC=12.8=82=412.BC=12.8=82=4 cm
Áp dụng định lí Py-ta-go vào ΔAHBΔAHB vuông tại H, ta có:
BA2=BH2+AH2BA2=BH2+AH2
hay: 52=42+AH2⇒AH2=52<...
a) Vì tam giác ABC cân tại A suy ra AC=AC (T/chất), góc B= góc C
Xét tam giác ABH và tam giác ACH
Có: AB=AC (Vì tam giác ABC cân tại A)
AH chung
HB=HB (GT)
suy ra tam giác ABH = tam giác ACH (c.c.c) (1)
b) Vì HB=HC=BC/2=6/2=3 (cm)
Từ (1) suy ra góc AHB=góc AHC (2 góc tương ứng)
mà góc AHB=góc AHC=180 độ
suy ra góc AHB=góc AHC=90 độ
Xét tam giác AHB vuông tại H suy ra AB^2=AH^2+BH^2 (Định lý pytago)
suy ra 5^2=AH^2+3^2
25=AH^2+9
suy ra AH^2=16 suy ra AH=4(cm) vì AH >0
c) Xét tam giác vuông AHE và tam giác vuông AHF
có AH chung
góc HAE=góc HAF ( theo câu a)
suy ra tam giác AHE =tam giác AHF (cạnh huyền-góc nhọn)
suy ra AE=AF suy ra A thuộc đường TT của EF (3)
HE=HF suy ra H thuộc đường TT của EF (4)
từ (3) và (4) suy ra AH là đường TT của EF
@trần thị giang : thì mình KHÔNG hỏi bạn, nếu ai biết thì trả lời, CÂM ĐƯỢC RỒI