K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

Vẽ hình ra ta có tia

6 tháng 2 2016

Bạn giúp mình giải đi nguyenmanhtrung

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMRa)HB=AK                  b)Tính BH2+CK2Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,ADBài 16.Cho tam giác ABC vuông...
Đọc tiếp

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2

Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2

Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMR

a)HB=AK                  b)Tính BH2+CK2

Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,AD

Bài 16.Cho tam giác ABC vuông cân tại A.Kẻ 1 đường thẳng d qua A.Từ B,C kẻ BH,CE vuông góc d(H,E nằm trên d).Chứng minh rằng tổng BH2+CE2 không phụ thuộc vị trí d

Bài 17.Cho O là điểm tùy ý nằm trong tam giác ABC.Vẽ OA1,OB1,OC1 lần lượt vuông góc với BC,CA,AB.CMR AB12+BC12+CA12=AC12+BA12+CB12

Bài 18.Cho tam giác ABC vuông tại A.Kẻ AH vuông góc BC(H nằm trên BC).Điểm D nằm giữa A và H.Trên tia đối của tia HA,lấy điểm E sao cho HE=AD.Đường thẳng vuông góc AH tại D cắt AC tại F.Chứng minh EB vuông góc EF

1
6 tháng 2 2017

B12:

Có:Tam giác ABH vuông tại H

     ________ACH__________

=>AB2-AC2=(AH2+BH2)-(AH2+CH2)=BH2-CH2.

1 tháng 3 2019

Lộn xíu :v

Choa sửa lại cái đề pài :>

Cho tam giác ABC , góc A < 90o . Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là tam giác AMB và tam giác ANC ( đoạn đầu tiên ó )

8 tháng 7 2019

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

\(\widehat{MAC}=\widehat{BAN}\left(do\widehat{MAB}+\widehat{BAC}=\widehat{NAC}+\widehat{BAC}\right)\)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì \(\Delta AMC=\Delta ABN\)nên

\(\widehat{FMA}=\widehat{FBI}\)

mà \(\widehat{FMA}+\widehat{FMB}=45^O\)

=>\(\widehat{FBI}+\widehat{IMB}=45^O\)

Xét \(\Delta IMB\)có góc \(\widehat{IMB}+\widehat{MBI}+\widehat{BIM}\)= 180O

Mà \(\widehat{IMB}+\widehat{MBI}\)=900

=>...

DM
31 tháng 1 2018

Áp dụng định lí Pitago cho 3 tam giác vuông ABH,ACH,ABC ta có:

                                                \(AH^2+BH^2=AB^2\)

                                               \(AH^2+CH^2=AC^2\)

                                              \(AB^2+AC^2=BC^2\)

Cộng theo vế ba đẳng thức trên và rút gọn ta được    \(2AH^2+BH^2+CH^2=BC^2\).