Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay x = 2 ta được 6 - 5 = 3 - 2 (luondung)
Vậy x = 2 là nghiệm pt trên
Thay x = 1 ta được 3 - 5 = 3 - 1 (voli)
Vậy x = 1 ko phải là nghiệm pt trên
b, Thay x = 2 ta được \(2m=m+6\Leftrightarrow m=6\)
Đặt x+1/x = a => x^2 + 1/x^2 = a^2-2
pt <=> a^2-2+2a+3 = 0
<=> a^2+2a+1 = 0
<=> (a+1)^2 = 0
<=> a+1=0
<=> a=-1
<=> x+1/x = -1
<=> x^2+1=-x
<=> x^2+x+1 = 0
=> pt vô nghiệm
P/S : Tham khảo
Tk mk nha
pt <=> x^4+x^3+x^2+x^2+x+1=0
<=> x^4+x^2+x^3+x+x^2+1=0
<=> x^2(x^2+1)+x(x^2+1)+(x^2+1)=0
<=>(x^2+x+1)(x^2+1)=0
<=> x^2+x+1=0 (Vô nghiệm)
hoặc x^2+1=0 (vô lý)
=>pt vô nghiệm
tk mk nhé
đây chính là hàm số y = ax +b voi a =1; b = -m2 -1
voi y =0 => x = m2 +1 <0 ( vô nghiệm vì m2 +1 luôn >0 voi moi m)
kl: không có gt m để x<0
a) 2x+m+1 =0
2x = - m -1
x =( -m-1)/2 >0
m < -1 ( khi nhân 2 vế của bđt với 1 số âm thì bđt đảo chiều)
b) x -1 -m2 =0
x = m2 +1 <0 ( vô nghĩa vì với mọi m thì m2 +1 luôn >0 )
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
\(x\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x=0\) hay \(x+3=0\) hay \(x^2+1=0\) (pt vô nghiệm vì \(x^2+1\ge1\))
\(\Leftrightarrow x=0\) hay \(x=-3\)
-Vậy \(S= \left\{0;-3\right\}\)