K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ta thấy ab = ab ; bc = cd

=> tứ giác ABCD là hình bình hành 

=> AC và BD cắt nhau tai trung điểm của mỗi đường 

=> AC là đường trung trực của BD

b) Ta có A + D = 180 

=> D = 180 - 100

=> D= 80

Ta lại có B + C = 180

=> C = 180 - 60

=> C = 120

a) Ta có: AB = AD (gt)  => A thuộc đường trung trực của BD

CB = CD (gt)   => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: ⇒ˆB=ˆD

Ta có ˆB+ˆD=3600–(100+60)=200

 Do đó ˆB=ˆD=1000

23 tháng 6 2019

mban trl giúp mình câu C luôn nha ạ😭

18 tháng 7 2016

Tự vẽ hình nha

a) Có : AB=AD(gt)

=>  A\(\in\)đường trung trực của đoạn thẳng BD(1)

   Có:  CB=CD(gt)

=> C\(\in\)đường trung trực của đoạn thẳng BD(2)

 Từ 1,2 suy ra:

          A,C \(\in\)Đường trung trực của đoạn thẳng BD

=>     AC là đường trung trực của đoạn thẳng BD

b, Xét tam giác ABC và ADC có:

        AB=AD(gt)

         BC=DC(gt)

         AC: góc chung

=> tam giác ABC=ADC( c.c.c)

=> ^BAC=^DAC(2 góc tương ứng)

     ^BCA=^DCA(2 góc tương ứng)

    ^ABC=^ADC(2 góc tương ứng)

Có: ^BAD=^BAC+^DAC=100

=> ^BAC=^DAC=50

Lại có  ^BCD=^BAC+^DCA=60

=>  ^BAC=^DCA=30

   Xét tam giác ABC có: ^BAC+^ACB+^ABC=180

                            =>   ^ABC=180- ^ACB - ^BAC=180 -60-100=20

Vậy ^B = ^C = 20

Tích mink nha (^.^)

    

21 tháng 4 2017

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: \(\widehat{B}=\widehat{D}\)

Ta có \(\widehat{B}+\widehat{D}=360^o-\left(100^o+60^o\right)=200^o\)

Do đó \(\widehat{B}=\widehat{D}=100^o\)

21 tháng 4 2017

Bài giải:

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: ˆB=ˆD⇒B^=D^

Ta có ˆB+ˆD=3600(100+60)=200B^+D^=3600−(100+60)=200

Do đó ˆB=ˆD=1000B^=D^=1000

a: BA=BC

DC=DA

=>BD là trung trực của AC

b: Xét ΔBAD và ΔBCD có

BA=BC

DA=DC

BD chung

=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=(360-100-80)/2=90 độ

30 tháng 7 2017

a) Ta có:

AB = AD (gt) ⇒ A thuộc đường trung trực của BD

CB = CD (gt) ⇒ C thuộc đường trung trực của BD

Vậy AC là đường trung trực của BD

b) Xét ΔABC và ΔADC có:

   AB = AD (gt)

   BC = DC (gt)

   AC cạnh chung

⇒ ΔABC = ΔADC (c.c.c)

Giải bài 3 trang 67 Toán 8 Tập 1 | Giải bài tập Toán 8

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)