Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)
b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(\sqrt{x}=a,\sqrt{y}=b\)
Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)
\(\Rightarrow B=x+\sqrt{xy}+y\)
Vậy...
c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)
d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)
a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)
= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)
=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)
= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)
b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)
=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )
= (x+\(\sqrt{xy}\)+y)
c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)
Tương tự câu a
d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)
tương tự câu a
e:2x +√1−6x+9x23x−1
= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)
= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)
=2x+\(\dfrac{3x-1}{3x-1}\)
=2x+1
\(a+b+c=2\Rightarrow\left(a+b+c\right)^2=4\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)=4\)
\(\Rightarrow ab+ac+bc=\dfrac{4-\left(a^2+b^2+c^2\right)}{2}=\dfrac{4-2}{2}=1\)
\(\Rightarrow\left\{{}\begin{matrix}1+b^2=b^2+ab+ac+bc=\left(a+b\right)\left(b+c\right)\\1+c^2=c^2+ab+ac+bc=\left(a+c\right)\left(b+c\right)\\1+a^2=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\end{matrix}\right.\)
\(\Rightarrow a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}=a\sqrt{\dfrac{\left(b+c\right)^2\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}}=a\left(b+c\right)\)
Tương tự ta có: \(b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=b\left(a+c\right)\)
\(c\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}=c\left(a+b\right)\)
\(\Rightarrow A=a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)=2\left(ab+ac+bc\right)=2\)
• Vì a, b, c đều dương và a + b + c = 2
nên \(0< a,b,c< 2\)
• Theo gt, ta có:
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2-a\\\left(b+c\right)^2-2bc=2-a^2\end{matrix}\right.\)
\(\Rightarrow\left(2-a\right)^2-2+a^2=2bc\)
\(\Rightarrow bc=\dfrac{\left(4-4a+a^2\right)-2+a^2}{2}=\dfrac{2a^2-4a+2}{2}=\left(a-1\right)^2\)
\(\Rightarrow b^2c^2=\left(a-1\right)^4\)
• Ta lại có: \(a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}=a\sqrt{\dfrac{1+b^2+c^2+b^2c^2}{1+a^2}}\)
\(=a\sqrt{\dfrac{3-a^2+\left(a-1\right)^4}{1+a^2}}=a\sqrt{\dfrac{a^4-4a^3+5a^2-4a-4}{1+a^2}}\)
\(=a\sqrt{\dfrac{\left(1+a^2\right)\left(a-2\right)^2}{1+a^2}}=a\left(2-a\right)\)
• Tương tự, ta cũng có: \(b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=b\left(2-b\right)\)
\(c\sqrt{\dfrac{\left(1+b^2\right)\left(1+a^2\right)}{1+c^2}}=c\left(2-c\right)\)
• Suy ra \(a\sqrt{\dfrac{\left(1+a^2\right)\left(a-2\right)^2}{1+a^2}}+b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\dfrac{\left(1+b^2\right)\left(1+a^2\right)}{1+c^2}}\)
\(=2\left(a+b+c\right)-\left(a^2+b^2+c^2\right)=2\left(đpcm\right)\)
Từ \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2017\)
\(\Leftrightarrow7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2017\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le2017\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(T=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
\(=\dfrac{1}{\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2c^2+a^2\right)}}\)
\(\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2^2}{2a}+\dfrac{1^2}{b}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2b}+\dfrac{1^2}{c}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2c}+\dfrac{1^2}{a}\right)\)
\(\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\)\(=\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\le\sqrt{\left(\dfrac{1}{81}+\dfrac{1}{81}+\dfrac{1}{81}\right)\left(\dfrac{9}{a^2}+\dfrac{9}{b^2}+\dfrac{9}{c^2}\right)}\)
\(\le\sqrt{\dfrac{1}{81}\cdot3\cdot9\cdot2017}=\sqrt{\dfrac{2017}{3}}\)
Vậy \(T_{Max}=\sqrt{\dfrac{2017}{3}}\) khi \(a=b=c=\sqrt{\dfrac{3}{2017}}\)
So kimochiii~
Câu 2:
a: \(=2\left(\sqrt{4+\sqrt{5}-1}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\cdot\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=8\)
b: \(=\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{a-1}\cdot\left(\dfrac{a+1-2}{a+1}\right)^2\)
\(=\dfrac{2\left(a+1\right)}{a-1}\cdot\dfrac{\left(a-1\right)^2}{\left(a+1\right)^2}=\dfrac{2\left(a-1\right)}{a+1}\)