Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)
\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)
\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)
\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)
B1.
Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)
\(a,ĐK:x\ge0;x\ne9\\ A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\\ b,x=13-4\sqrt{3}=\left(2\sqrt{3}-1\right)^2\\ \Leftrightarrow A=\dfrac{-3}{2\sqrt{3}-1+3}=\dfrac{-3}{2\sqrt{3}+2}=\dfrac{-3\left(2\sqrt{3}-2\right)}{8}\)
\(c,A< -\dfrac{1}{2}\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\Leftrightarrow\dfrac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}< 0\\ \Leftrightarrow\sqrt{x}-3< 0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\\ d,A=-\dfrac{2}{3}\Leftrightarrow\dfrac{3}{\sqrt{x}+3}=\dfrac{2}{3}\\ \Leftrightarrow2\sqrt{x}+6=9\\ \Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\left(tm\right)\\ e,\Leftrightarrow\sqrt{x}+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}=0\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x=0\left(tm\right)\\ f,\sqrt{x}+3\ge3\\ \Leftrightarrow A=-\dfrac{3}{\sqrt{x}+3}\ge-\dfrac{3}{3}=-1\\ A_{min}=-1\Leftrightarrow x=0\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne2\\x\ne4\\x\ge0\end{matrix}\right.\)
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn!
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\dfrac{3x-2\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(2\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-2\sqrt{x}-4-x+1-2x-6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-8\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
Đề bài có vẻ không hợp lý
\(a.P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{10\sqrt{x}-2x}\left(x>0,x\ne4,x\ne25\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right].\dfrac{x-4}{10\sqrt{x}-2x}\)
\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{10\sqrt{x}-2x}\)
\(=\dfrac{2x}{x-4}.\dfrac{x-4}{2\sqrt{x}\left(5-\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}}{5-\sqrt{x}}\)
\(b.\) Thay \(x=\dfrac{1}{4}\) vào P, ta được:
\(\dfrac{\sqrt{\dfrac{1}{4}}}{5-\sqrt{\dfrac{1}{4}}}=\dfrac{0,5}{5-0,5}=\dfrac{1}{9}\)
Vậy ......................
\(c.P< -1\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{5-\sqrt{x}}< -1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+5-\sqrt{x}}{5-\sqrt{x}}< 0\)
\(\Leftrightarrow\dfrac{5}{5-\sqrt{x}}< 0\)
\(\Leftrightarrow5-\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}>5\)
\(\Leftrightarrow x>25\left(tm\right)\)
Vậy ...................
\(T=\dfrac{2\left(x-1\right)}{\sqrt{x}+1}+\dfrac{x-4}{\sqrt{x}-2}\)
\(T=\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\)
\(T=2\left(\sqrt{x}+1\right)+\left(\sqrt{x}+2\right)\)
\(T=2\sqrt{x}+2+\sqrt{x}+2\)
\(T=3\sqrt{x}+4\)
\(x=4\)
\(\Rightarrow T=3\sqrt{4}+4=3.2+4=10\)