K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

Vì phương trình trên có nghiệm là 2 nên 

Thay x = 2 vào phương trình trên, phương trình có dạng : 

\(4m-6+2m+1=0\Leftrightarrow6m-5=0\Leftrightarrow m=\frac{5}{6}\)

Vậy với x = 2 thì m = 5/6 

5 tháng 6 2021

thay x = 2 vào pt , ta có :

4m - 6 + 2m = 0

(=) 6m - 6 = 0 

(=) 6m = 6

(=) m = 1

17 tháng 5 2022

thay x = 2 vào pt ta có 

4m - 6 + 2m + 1 = 0 

<=> 6m -5 = 0 

<=> m = \(\dfrac{5}{6}\)

vậy m = \(\dfrac{5}{6}\)

17 tháng 5 2022

Thay `x=2` vào ptr có:

   `m.2^2-3.2+2m+1=0`

`<=>4m-6+2m+1=0`

`<=>6m=5`

`<=>m=5/6`

NV
15 tháng 2 2022

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

NV
15 tháng 2 2022

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

Bài 1: 

a) Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot m\cdot\left(m+2\right)\)

\(\Leftrightarrow\Delta=4m^2-4m+1-4m^2-8m\)

\(\Leftrightarrow\Delta=-12m+1\)

Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow-12m+1=0\)

\(\Leftrightarrow-12m=-1\)

hay \(m=\dfrac{1}{12}\)

b) Ta có: \(\Delta=\left(4m+3\right)^2-4\cdot2\cdot\left(2m^2-1\right)\)

\(\Leftrightarrow\Delta=16m^2+24m+9-16m^2+8\)

\(\Leftrightarrow\Delta=24m+17\)

Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow24m+17=0\)

\(\Leftrightarrow24m=-17\)

hay \(m=-\dfrac{17}{24}\)

Δ=(-m)^2-4(2m-3)

=m^2-8m+12

=(m-2)(m-6)

Để phương trình co 2 nghiệm pb thì (m-2)(m-6)>0

=>m>6 hoặc m<2

x1^2*x2+x1*x2^2=5

=>x1x2(x1+x2)=5

=>(2m-3)*m=5

=>2m^2-3m-5=0

=>2m^2-5m+2m-5=0

=>(2m-5)(m+1)=0

=>m=5/2(loại) hoặc m=-1(nhận)

NV
7 tháng 3 2023

\(\Delta=\left(2m+5\right)^2-4\left(m-1\right)=4m^2+16m+29=4\left(m+2\right)^2+13>0;\forall m\)

\(\Rightarrow\) Phương trình có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m-5\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: \(2\left(x_1+x_2\right)=3x_1x_2\)

\(\Leftrightarrow2\left(-2m-5\right)=3\left(m-1\right)\)

\(\Leftrightarrow7m=-7\)

\(\Leftrightarrow m=-1\)

31 tháng 3 2020

bạn chịu khó gõ link này lên google nhé !

https://olm.vn/hoi-dap/detail/216323474773.html

31 tháng 3 2020

hoang lam             

ui  chết gõ  nhầm link r :((

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)