K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2016

trả hiểu cái gì cả

1 tháng 6 2016

trả hiểu cái gì cả

6 tháng 5 2020

\(A=\frac{m^2+5m+3}{m^2+m+1}\)

\(\Leftrightarrow A\cdot m^2+A\cdot m+A=m^2+5m+3\)

\(m^2\left(A-1\right)+m\left(A-5\right)+\left(A-3\right)=0\)

Xét \(\Delta=\left(A-5\right)^2-4\left(A-3\right)\left(A-1\right)\)

\(=A^2-10A+25-4\left(A^2-4A+3\right)\)

\(=-3A^2+6A+12\)

Điều kiện có nghiệm là \(\Delta\ge0\) bám vào đk mà đánh giá tiếp

7 tháng 5 2020

Xét A = 1 nữa.

30 tháng 3 2023

\(x^2-\left(m+2\right)x+m=0\left(1\right)\)

Để phương trình (1) có nghiệm thì:

\(\Delta\ge0\Rightarrow\left(m+2\right)^2-4m\ge0\)

\(\Leftrightarrow m^2+4\ge0\) (luôn đúng)

Vậy \(\forall m\) thì phương trình (1) luôn có nghiệm.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)

\(A=x_1^3-\left(m+1\right)x_1^2+mx_1-5m\)

\(=x_1^3-\left(x_1+x_2-1\right)x_1^2+x_1\left(m-5\right)\)

\(=x_1^3-x_1^3-x_1^2x_2+x_1^2+x_1\left(x_1x_2-5\right)\)

\(=-x_1^2x_2+x_1^2+x_1^2x_2-5x_1\)

\(=x_1^2-5x_1=\left(x_1^2-5x_1+\dfrac{25}{4}\right)-\dfrac{25}{4}=\left(x_1-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)

Vậy \(MinA=-\dfrac{25}{4}\).

 

15 tháng 7 2019

\(2x+\left|2x-5\right|=2x+\left|5-2x\right|\ge2x+5-2x=5.\Rightarrow A_{min}=5.\text{Dâu "=" xay }ra\Leftrightarrow2x-5\ge0\Leftrightarrow x\le2,5\)

\(M=\left|x\right|+\left|x-1\right|=\left|x\right|+\left|1-x\right|\ge x+1-x=1\Rightarrow M_{min}=1.\text{Dâu "=" xay ra}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)

\(A=x-\sqrt{x}\Leftrightarrow A+\frac{1}{4}=x-\sqrt{x}+\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Rightarrow A+\frac{1}{4}\ge0\Rightarrow A_{min}=\frac{-1}{4}.\text{Dâus "=" xay ra khi:}x=\frac{1}{4}\)

15 tháng 7 2019

Bài 1:

Sửa đề :v

\(B=x\left(x-3\right)\left(x-1\right)\left(x-4\right)\)

\(B=\left(x^2-4x\right)\left(x^2-4x+3\right)\)

Đặt \(x^2-4x=t\)

\(B=t\left(t+3\right)\)

\(B=t^2+3t=t^2+2\cdot t\cdot\frac{3}{2}+\frac{9}{4}-\frac{9}{4}=\left(t+\frac{3}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\forall t\)

Dấu "=" xảy ra \(\Leftrightarrow t=\frac{-3}{2}\Leftrightarrow x^2-4x=\frac{-3}{2}\Leftrightarrow x=\frac{4\pm\sqrt{10}}{2}\)

Bài 2: Mình nghĩ nên sửa đề tìm min \(A=\left|2x\right|+\left|2x-5\right|\)

Bài 3:

\(M=\left|x\right|+\left|x-1\right|\)

\(M=\left|x\right|+\left|1-x\right|\ge\left|x+1-x\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow x\left(1-x\right)\ge0\Leftrightarrow0\le x\le1\)

Bài 4:

\(A=x-\sqrt{x}\)

Do điều kiện \(x\ge0\)

\(\Rightarrow A\ge0+0=0\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

17 tháng 8 2018

a, \(f\left(x\right)=\sqrt{x}\left(1-\sqrt{x}\right)=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

khi x=1/4

b,\(g\left(x\right)=\dfrac{1}{x^2-2\sqrt{2}x+5}=\dfrac{1}{\left(x-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)

khi x=căn 2

c,\(x-4\sqrt{x-3}=x-3-4\sqrt{x-3}+4-1\)

\(=\left(\sqrt{x-3}-2\right)^2-1\ge-1\)

dấu = khi x=7

d, g(x)=\(x-2\sqrt{xy}+3y-2\sqrt{x}+\dfrac{4009}{2}\)

3g(x)=\(x-6\sqrt{xy}+9y+2x-6\sqrt{x}+\dfrac{9}{2}+6009\)

3g(x)=\(\left(\sqrt{x}-3\sqrt{y}\right)^2+2\left(\sqrt{x}-\dfrac{3}{2}\right)^2+6009\)

3g(x)>= 6009

g(x)>=2003

khi x=9y=9/4ngoam

NV
12 tháng 4 2020

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

NV
12 tháng 4 2020

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)

NV
5 tháng 8 2020

Đặt \(x^2=t\ge0\Rightarrow t^2-2mt+5m-4=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-5m+4>0\\t_1+t_2=2m>0\\t_1t_2=5m-4>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>4\\\frac{4}{5}< m< 1\end{matrix}\right.\)

Gọi \(t_1;t_2\) là 2 nghiệm của (1) sao cho \(t_1< t_2\Rightarrow\left\{{}\begin{matrix}x_1=-\sqrt{t_2}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_1}\\x_4=\sqrt{t_2}\end{matrix}\right.\)

\(T=2\left(t_1^2+t_2^2\right)-6t_1t_2=2\left(t_1+t_2\right)^2-10t_1t_2\)

\(=2\left(2m\right)^2-10\left(5m-4\right)=8m^2-50m+40\)

Bạn coi lại đề, biểu thức này ko tồn tại min