Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-7x+12=x^2-3x-4x+12=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
\(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)
\(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x-3\right)\left(x+6\right)\)
a,x2-7x+12=(x-4)(x-3)
b,3x2+13x-10=(3x-2)(x+5)
c,x2-2x-3=(x-3)(x+1)
d,x2+3x-18=(x-3)(x+6)
a/ (x+5)(3x+2)^2=x^2(x+5)
(x+5)(9x^2+12x+4)=x^2(x+5)
9x^3+12x^2+4x+45x^2+60x+20=x^3+5x^2
9x^3-x^3+12x^2+45x^2-5x^2+4x+60x=-20
8x^3+52x^2+64x+20=0
........................
a, \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\left(ĐKXĐ:x\ne\pm2;\pm5\right)\)
\(\frac{x+9}{\left(x-5\right)\left(x+2\right)}-\frac{x+15}{\left(x+5\right)\left(x-5\right)}=\frac{1}{x+2}\)
\(\frac{\left(x+9\right)\left(x+5\right)}{\left(x-5\right)\left(x+2\right)\left(x+5\right)}-\frac{\left(x+15\right)\left(x+2\right)}{\left(x+5\right)\left(x-5\right)\left(x+2\right)}=\frac{\left(x+5\right)\left(x-5\right)}{\left(x+2\right)\left(x+5\right)\left(x-5\right)}\)
Khử mẫu : \(\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)=\left(x+5\right)\left(x-5\right)\)
\(x^2+14x+45-x^2-17x-30=x^2-25\)
\(-3x+15-x^2+25=0\)
\(-3x-x^2+40=0\)( giải delta ta đc )
\(x_1=-5;x_2=8\)
b, \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1ĐKXĐ\left(x\ne1;\frac{1}{3}\right)\)
\(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=1\)
\(\frac{x-1}{\left(3x-1\right)\left(x-1\right)}+\frac{\left(2x+2\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=\frac{\left(3x-1\right)\left(x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)
Khửi mẫu \(x-1+\left(2x+2\right)\left(3x-1\right)-3x^2-1=\left(3x-1\right)\left(x-1\right)\)( bn tự nốt nhé)
c, \(\left(x+3\right)^2-10\ge\left(x+3\right)\left(x+2\right)-4\)
\(x^2+6x+9-10\ge x^2+5x+6-4\)
\(x-3\ge0\Leftrightarrow x\ge3\)
a) \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\); ĐKXĐ: x # -2; x # +-5
<=> \(\frac{x+9}{\left(x+2\right)\left(x-5\right)}-\frac{x+15}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+2}\)
<=> \(\frac{\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)\left(x+5\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}\)
<=> (x + 9)(x + 5) - (x + 15)(x + 2) = (x - 5)(x + 5)
<=> -3x + 15 = x^2 - 25
<=> -3x + 15 - x^2 + 25 = 0
<=> -3x + 40 - x^2 = 0
<=> x^2 + 3x - 40 = 0
<=> (x - 5)(x + 8) = 0
<=> x - 5 = 0 hoặc x + 8 = 0
<=> x = 5 (ktm0 hoặc x = -8 (tm)
b) \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1\); ĐKXĐ: x # 1/3; x # 1
<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{x\left(3x-1\right)-\left(3x-1\right)}=1\)
<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=1\)
<=> \(\frac{x-1}{\left(x-1\right)\left(3x-1\right)}+\frac{2\left(x+1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}\)
<=> x - 1 + 2(x + 1)(3x - 1) - 3x^2 + 1 = (x - 1)(3x - 1)
<=> 5x - 4 + 3x^2 = 3x^2 - 4x + 1
<=> 5x - 4 = -4x + 1
<=> 5x + 4x = 1 + 4
<=> 9x = 5
<=> x = 5/9 (tm)
c) (x + 3)^2 - 10 >= (x + 3)(x + 2) - 4
<=> x^2 + 3x + 3x + 9 - 10 >= x^2 + 2x + 3x + 6 - 4
<=> x^2 + 6x + 9 - 10 >= x^2 + 5x + 6 - 4
<=> x^2 + 6x - 1 >= x^2 + 5x + 2
<=> x^2 + 6x - 1 - x^2 - 5x - 2 >= 0
<=> x - 3 >= 0
<=> x >= 3
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
a) = x2(x-1) - 4(x-1)
=(x-1)(x2 - 4)
chỗ kia chưa pt hết kìa