Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/2.6 + 1/6.10 + 1/10.14 + ..... + 1/102.106
=> 4A = 4/2.6 + 4/6.10 + 4/10.14 + ..... + 4/102.106
=> 4A = 1/2 - 1/6 + 1/6 - 1/10 + 1/10 - 1/14 + ... + 1/102 - 1/106
=> 4A = 1/2 - 1/106
=> 4A = 26/53
=> A = 13/106
~Study well~
#QASJ
\(\frac{1}{2.6}+\frac{1}{6.10}+...+\frac{1}{102.106}\)
\(=\frac{1}{4}.\left(\frac{4}{2.6}+\frac{4}{6.10}+...+\frac{4}{102.106}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+...+\frac{1}{102}-\frac{1}{106}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{106}\right)\)
\(=\frac{1}{4}.\frac{26}{53}\)
\(=\frac{13}{106}\)
\(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2015.2018}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2015}-\frac{1}{2018}\)
\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)
Vậy \(A=\frac{504}{1009}.\)
\(B=\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{102.106}\)
\(=\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{102}-\frac{1}{106}\)
\(=\frac{1}{2}-\frac{1}{106}=\frac{26}{53}\)
Vậy \(B=\frac{26}{53}.\)
Bài làm:
a) \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2015.2018}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2015}-\frac{1}{2018}\)
\(A=\frac{1}{2}-\frac{1}{2018}\)
\(A=\frac{504}{1009}\)
b) \(B=\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{102.106}\)
\(B=\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{102}-\frac{1}{106}\)
\(B=\frac{1}{2}-\frac{1}{106}\)
\(B=\frac{26}{53}\)
Sửa đề: \(D=\dfrac{3}{2\cdot6}+\dfrac{3}{6\cdot10}+\dfrac{3}{10\cdot14}+...+\dfrac{3}{26\cdot30}\)
Ta có: \(D=\dfrac{3}{2\cdot6}+\dfrac{3}{6\cdot10}+\dfrac{3}{10\cdot14}+...+\dfrac{3}{26\cdot30}\)
\(=\dfrac{3}{4}\left(\dfrac{4}{2\cdot6}+\dfrac{4}{6\cdot10}+\dfrac{4}{10\cdot14}+...+\dfrac{4}{26\cdot30}\right)\)
\(=\dfrac{3}{4}\left(\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{14}+...+\dfrac{1}{26}-\dfrac{1}{30}\right)\)
\(=\dfrac{3}{4}\left(\dfrac{1}{2}-\dfrac{1}{30}\right)\)
\(=\dfrac{3}{4}\cdot\dfrac{28}{60}\)
\(=\dfrac{21}{60}=\dfrac{7}{20}\)
\(S=\dfrac{2}{2\cdot6}+\dfrac{2}{6\cdot10}+...+\dfrac{2}{96\cdot100}\\ =\dfrac{1}{2}\left(\dfrac{4}{2\cdot6}+\dfrac{4}{6\cdot10}+...+\dfrac{4}{96\cdot100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{10}+...+\dfrac{1}{96}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}\cdot\dfrac{49}{100}\\ =\dfrac{49}{100}\)
\(\dfrac{3}{2.6}\) + \(\dfrac{3}{6.10}\) + \(\dfrac{3}{10.14}\)
= \(\dfrac{3}{4}\).(\(\dfrac{4}{2.6}\) + \(\dfrac{4}{6.10}\) + \(\dfrac{4}{10.14}\))
= \(\dfrac{3}{4}\).(\(\dfrac{1}{2}-\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{14}\))
= \(\dfrac{3}{4}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{14}\))
= \(\dfrac{3}{4}\). \(\dfrac{3}{7}\)
= \(\dfrac{9}{28}\)
B = \(\dfrac{4}{1.3.5}\) + \(\dfrac{4}{3.5.7}\) + \(\dfrac{4}{5.7.9}\)
B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{3.5}\) + \(\dfrac{1}{3.5}\) - \(\dfrac{1}{5.7}\) + \(\dfrac{1}{5.7}\) - \(\dfrac{1}{7.9}\)
B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{7.9}\)
B = \(\dfrac{1}{3}\) - \(\dfrac{1}{63}\)
B = \(\dfrac{20}{63}\)
\(I=\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{402.406}\)
\(\Leftrightarrow I=\frac{1}{4}\left(\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{402}-\frac{1}{406}\right)\)
\(\Leftrightarrow I=\frac{1}{4}\left(\frac{1}{6}-\frac{1}{406}\right)\)
\(\Leftrightarrow I=\frac{1}{4}\cdot\frac{100}{609}\)
\(\Leftrightarrow I=\frac{25}{609}\)
4I = 4/6.10 + 4/10.14 + ......+ 4/402.406 À mình nói thêm tử số sẽ dựa vào khoảng cách giữa 2 mẫu số
= 1/6 -1/10 + 1/10 -1/14+......+1/402 -1/406
= 1/6 - 1/406 = 100/609
I =100/609 : 4 = 25/609
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)
\(A=\frac{1}{6.10}+\frac{1}{10.14}+\frac{1}{14.18}+...+\frac{1}{402.406}\)
4\(A=\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+...+\frac{1}{402}-\frac{1}{406}\)
4\(A=\frac{1}{6}-\frac{1}{406}\)
4\(A=\frac{100}{609}\)
\(\Rightarrow A=\frac{100}{609}:4\)\(=\frac{25}{609}\)
=1/6-1/10+1/10-1/14+1/14-1/18+...........+1/402-1/406
=1/6-1/406
12.T=2.6.12+6.10.12+10.14.12+...+102.106.12=
=2.6.(10+2)+6.10.(14-2)+10.14.(18-6)+...+102.106.(110-98)=
=2.2.6+2.6.10-2.6.10+6.10.14-6.10.14+10.14.18-...-98.102.106+102.106.110=
=2.2.6+102.106.110
\(\Rightarrow T=\dfrac{2.2.6+102.106.110}{12}=99112\)
bạn j ơi cho mình hỏi là 102 lấy ở đâu ja <3