Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I_0 = q_0.\omega = 10^{-9}.10^4= 10^{-5}A.\)
\(\left(\frac{q}{q_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
=> \(\left(\frac{q}{q_0}\right)^2 = 1-\left(\frac{i}{I_0}\right)^2 = 1-\left(\frac{6.10^{-6}}{10^{-5}}\right)^2= \frac{16}{25} \)
=> \(q = q_0.\frac{4}{5} = 8.10^{-10}C.\)
\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1 => i = 8mA.\)
\(\omega = \frac{1}{\sqrt{LC}}=> L = \frac{1}{\omega^2.C }= 5.10^{-2}H.\)
Hướng dẫn giải:
Thời gian để tụ phòng hết điện tích (q0 -> 0) được tính như sau
\(t = \frac{\varphi}{\omega}=\frac{\pi/2}{2\pi/T}=\frac{T}{4} \) => \(T = 4.2.10^{-6}= 8.10^{-6}s.\)
\(I_0 = q_0.\omega = 10^{-8}.\frac{2\pi}{8.10^{-6}}= 2,5.\pi.10^{-3} => I = \frac{I_0}{\sqrt{2}} \approx 5,55 mA.\)
Ta có: \(W=W_t+W_d\)
\(\Leftrightarrow W_t=W_{dmax}-W_d\)
\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)
\(=5.10^{-5}J\)
\(\omega = \frac{1}{\sqrt{LC}}=> C = \frac{1}{\omega^2.L}= 5.10^{-6}F.\)
\(W= \frac{1}{2}CU_0^2=2,5.10^{-4}J. \)
Khoảng thời gian để \(W_C=W_L\) giữa hai lần liên tiếp là \(\frac{T}{4}s\)
\(=> \frac{T}{4}=10^{-6}s=> T= 4.10^{-6}s.\)
\(W=\frac{1}{2}CU_0^2=> C = 1,25.10^{-7}F. \)
\(T=2\pi \sqrt{LC}=> L = \frac{T^2}{4\pi^2 C}=3,2.10^{-6}H.\)
\(W=\frac{1}{2}LI_0^2=> I_0=0,79A.\)
Io=w.qo=1(A)
=>qo=1/w =1/200(C)
=>Uo=qo/C=(1/200)/(10^-6)=5.10^3
=> ý E -_- (mình chỉ làm theo ý hiểu thôi, chả biết sai chỗ nào)
Đề bài hỏi điện tích cực đại trên tụ ($Q_0$) mà bạn.