K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

A = (2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+(2^10+2^11+2^12)

   = 2.(1+2+2^2)+2^4.(1+2+2^2)+2^7.(1+2+2^2)+2^10.(1+2+2^2)

   = 2.7+2^4.7+2^7.7+2^10.7

   = 7.(2+2^4+2^7+2^10) chia hết cho 7

Tk mk nha

8 tháng 3 2018

A = 2 + 22 + 23 + 24 + . . . + 212

A = ( 2 + 22 + 2) + . . . + ( 210 + 211 + 212 )

A = 2 . ( 1 + 2 + 22 ) + . . . + 210 . ( 1 + 2 + 22 )

A = 2 . 7 + 24 . 7 + . . . + 210 . 7

A = 7 . ( 2 + 2+ . . . + 510 ) \(⋮\)7

=> A \(⋮\)7

16 tháng 10 2019

A = 2+21+22+23+...+260

A = 2+2+2.2+2.2.2+........+2.2.2............2

Vì tất cả các số của tổng A là 2=> A chia hết cho 2

b) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)

  A = 2.14+ 25.14+..........+256.14

A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7

c) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)

  A = 2.30+ 26.30+..........+255.30

A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15

7 tháng 1 2021

a) P=2+22+23+24+...+260 \(⋮\) 21 và 15

\(\Rightarrow\)P = 22+23+24+25+...+261  

\(\Rightarrow\) (2P - P) = 261 - 2

\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)

Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15

tức là (260 - 1) \(⋮\)3; 5; 7

*Ta có 260 - 1 = (24)15 = 1615 - 1

          = (16 - 1).(1+16+162+163+...+1614)

          = 15.(1+16+162+163+...+1614\(⋮\) 15  

Vậy  P \(⋮\) 15  (1)

    * Ta có 260 - 1 = (26)10 - 1 = 6410 - 1

                = (64 - 1).(1+64+642+643+...+64)

                = 63 \(⋮\) (1+64+642+643+...+64)

                = 21.3.(1+64+642+643+...+64\(⋮\) 21

         P \(⋮\)21   (2) 

    Từ (1) và (2) \(\Rightarrow\)  P \(⋮\)15 và 21

  

 
29 tháng 1 2019

Cái này số nhỏ nên tớ tính luôn nhé :)

A=2+2^2+2^3+......+2^8

=> 2A=2^2+2^3+.......+2^9

=> 2A-A=A=2^9-2=512-2=510 chia hết cho 3(đpcm)

29 tháng 1 2019

Đặt \(A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\)

\(\Rightarrow2A=2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9\)

\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9\right)-\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)\)

\(\Rightarrow A=2^9-2\)

\(\Rightarrow A=512-2=510⋮3\)

Vậy A chia hết cho 3 (đpcm)

9 tháng 7 2017

Có nhầm đề ko bn

18 tháng 1 2019

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^7+2^8\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^7.\left(1+2\right)\)

\(=3.\left(2+2^3+...+2^7\right)=3.2.\left(1+2^2+2^3+...+2^6\right)\)

\(=6.\left(1+2^2+2^3+...+2^6\right)⋮-6\)

18 tháng 1 2019

\(S=2+2^2+2^3+...+2^8\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^6\left(2+2^2\right)\)

\(=1\cdot6+2^2\cdot6+...+2^6\cdot6\)

\(=6\left(1+2^2+...+2^6\right)=-6\cdot\left(-1\right)\left(1+2^2+...+2^6\right)⋮\left(-6\right)\)

Bài 1:Cho A = 21 + 22 + 23 + ... + 220Cho B = 31 + 32 + 33 + ... + 3300a) Tìm chữ số tận cùng của A.b) Chứng minh rằng B chia hết cho 2.c) Chứng minh rằng B - A chia hết cho 5.Bài 2 : Chứng minh rằng:a) 301293 - 1 chia hết cho 9b) 2093n - 803n - 464n - 261n chia hết cho 271c) 62n + 3n+2 . 3n chia hết cho 11d) 5 2n+1 . 2 n+2 + 3n+2. 22n+1 chia hết cho 19 ( n thuộc N)Bài 3: Ngày 1 tháng 1 năm 2010 bạn Nam sẽ kỉ niệm ngày sinh...
Đọc tiếp

Bài 1:

Cho A = 21 + 22 + 23 + ... + 220

Cho B = 31 + 32 + 33 + ... + 3300

a) Tìm chữ số tận cùng của A.

b) Chứng minh rằng B chia hết cho 2.

c) Chứng minh rằng B - A chia hết cho 5.

Bài 2 : Chứng minh rằng:

a) 301293 - 1 chia hết cho 9

b) 2093n - 803n - 464- 261chia hết cho 271

c) 62n + 3n+2 . 3n chia hết cho 11

d) 5 2n+1 . 2 n+2 + 3n+2. 22n+1 chia hết cho 19 ( n thuộc N)

Bài 3: Ngày 1 tháng 1 năm 2010 bạn Nam sẽ kỉ niệm ngày sinh nhật lần thứ 15 của mình. Biết rằng ngày 1 thắng 1 năm 2008 là ngày thứ 3.

a, Hãy tính xem bạn Nam sinh vào ngày thứ mấy.

b, Bạn Nam sẽ tổ chức sinh nhật lần thứ 15 vào ngày thứ mấy?

Bài 4:

So sánh các số sau:

a) 3281 và 3190

b) 11022009 - 11022008 và 11022008 - 11022007

c) A = ( 20082007 + 20072007)2008 và B = ( 20082008 + 200720082007

Bài 5: Tính tổng sau bằng cách hợp lí.

a) A = 21 + 22 + 23 + 24 +....+ 2100

b) B = 1 + 3 + 32 + .....+ 32009

c) C = 1 + 5 + 52 + 53... + 51998

d) D = 4 + 42 + 43 + ... + 4n


Bài 6: Cho A = 1 + 2 + 22 + 23 + 24 + ... + 2200. Hãy viết A + 1 dưới dạng một lũy thừa.

Bài 7 : Cho B = 3 + 32 + 33 + ... + 32005 . Chứng minh rằng 2B + 3 là lũy thừa của 3.

Bài 8 : Chứng minh rằng

a) 55 - 54 + 53 chia hết cho 7 .

b) 7+ 75 - 74 chia hết cho 11.

c, 10+ 108 + 107 chia hết cho 222.

d, 10- 5chia hết cho 59.

e, 3n+2 . 2n+2 + 3n - 2n chia hết cho 10 ( n thuộc N*).

f, 81- 279 - 913 chia hết cho 45.

7
5 tháng 12 2019

Vừa vừa thôi man,làm hết đó không khác gì nô lệ của bạn

lm 1 ít thui =>2A=

A = 21 + 22 + 23 + ... + 220

 =>2A=22+23+24+...+221

=>A=221-21

10 tháng 1 2023

câu a)

\(S=3^0+3^2+3^4+...+3^{2002}\\ \Rightarrow9S=3^2+3^4+3^6+...+3^{2004}\)

từ đó ta suy ra : \(9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)

vậy \(8S=3^{2004}-1\Rightarrow S=\dfrac{3^{2004}-1}{8}\)

b) các số mũ lần lượt như sau : \(0;2;4;6;8;...;2002\)

ta có các dãy số hạng của những số trên là :

\(\left(2002-0\right)\div2+1=1002\) (số)

số nhóm mà chúng ta có thể ghép được là :

\(\dfrac{1002}{3}=334\) \(\left(nhóm\right)\)

\(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\\ \Rightarrow S=\left(3^0+3^2+3^4\right)+3^6\times\left(3^0+3^2+3^4\right)+...+3^{1998}\times\left(3^0+3^2+3^4\right)\\ \Rightarrow S=1\times91+3^6\times91+...+3^{1998}\times91=\left(1+3^6+...+3^{1998}\right)\times91\)TA CÓ 91 CHIA HẾT CHO 7 CHO NÊN TA KẾT LUẬN RẰNG S ⋮ 7

10 tháng 1 2023

         S = 30 + 32 + 34 +.....+ 32002

      32S =         32  + 34+.....+32002 + 32004

9S -  S  = 32004 - 1

       8S =  32004 - 1

         S = (32004 - 1)/8

S = 30 + 32 + 34 +....+32002

Xét dãy số : 0; 2; 4; ....;2002

Dãy số trên có số hạng là : (2002 - 0) : 2 + 1  = 1002 ⋮ 2

Nhóm 2 số hạng liên tiếp của tổng S thành 1 nhóm ta được

S = (30 + 32) +( 32 + 34) +....+ ( 32000+32002)

S = 28 + 32.( 1+32) +....+ 32000.( 1+32)

S = 28 + 32. 28 +....+ 32000.28

S = 28 .( 1 + 32+....+32000

vì 28 ⋮ 7 ⇒ 28.( 1 + 32 +.....+ 32000) ⋮ 7

⇒ A = 30 + 32 + 34 +....+32002 ⋮ 7 (đpcm)