Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2+21+22+23+...+260
A = 2+2+2.2+2.2.2+........+2.2.2............2
Vì tất cả các số của tổng A là 2=> A chia hết cho 2
b) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)
A = 2.14+ 25.14+..........+256.14
A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7
c) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)
A = 2.30+ 26.30+..........+255.30
A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15
a) P=2+22+23+24+...+260 \(⋮\) 21 và 15
\(\Rightarrow\)P = 22+23+24+25+...+261
\(\Rightarrow\) (2P - P) = 261 - 2
\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)
Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15
tức là (260 - 1) \(⋮\)3; 5; 7
*Ta có 260 - 1 = (24)15 = 1615 - 1
= (16 - 1).(1+16+162+163+...+1614)
= 15.(1+16+162+163+...+1614) \(⋮\) 15
Vậy P \(⋮\) 15 (1)
* Ta có 260 - 1 = (26)10 - 1 = 6410 - 1
= (64 - 1).(1+64+642+643+...+649 )
= 63 \(⋮\) (1+64+642+643+...+649 )
= 21.3.(1+64+642+643+...+649 ) \(⋮\) 21
P \(⋮\)21 (2)
Từ (1) và (2) \(\Rightarrow\) P \(⋮\)15 và 21
Cái này số nhỏ nên tớ tính luôn nhé :)
A=2+2^2+2^3+......+2^8
=> 2A=2^2+2^3+.......+2^9
=> 2A-A=A=2^9-2=512-2=510 chia hết cho 3(đpcm)
Đặt \(A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\)
\(\Rightarrow2A=2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9\right)-\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)\)
\(\Rightarrow A=2^9-2\)
\(\Rightarrow A=512-2=510⋮3\)
Vậy A chia hết cho 3 (đpcm)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^7+2^8\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^7.\left(1+2\right)\)
\(=3.\left(2+2^3+...+2^7\right)=3.2.\left(1+2^2+2^3+...+2^6\right)\)
\(=6.\left(1+2^2+2^3+...+2^6\right)⋮-6\)
câu a)
\(S=3^0+3^2+3^4+...+3^{2002}\\ \Rightarrow9S=3^2+3^4+3^6+...+3^{2004}\)
từ đó ta suy ra : \(9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
vậy \(8S=3^{2004}-1\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
b) các số mũ lần lượt như sau : \(0;2;4;6;8;...;2002\)
ta có các dãy số hạng của những số trên là :
\(\left(2002-0\right)\div2+1=1002\) (số)
số nhóm mà chúng ta có thể ghép được là :
\(\dfrac{1002}{3}=334\) \(\left(nhóm\right)\)
\(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\\ \Rightarrow S=\left(3^0+3^2+3^4\right)+3^6\times\left(3^0+3^2+3^4\right)+...+3^{1998}\times\left(3^0+3^2+3^4\right)\\ \Rightarrow S=1\times91+3^6\times91+...+3^{1998}\times91=\left(1+3^6+...+3^{1998}\right)\times91\)TA CÓ 91 CHIA HẾT CHO 7 CHO NÊN TA KẾT LUẬN RẰNG S ⋮ 7
S = 30 + 32 + 34 +.....+ 32002
32S = 32 + 34+.....+32002 + 32004
9S - S = 32004 - 1
8S = 32004 - 1
S = (32004 - 1)/8
S = 30 + 32 + 34 +....+32002
Xét dãy số : 0; 2; 4; ....;2002
Dãy số trên có số hạng là : (2002 - 0) : 2 + 1 = 1002 ⋮ 2
Nhóm 2 số hạng liên tiếp của tổng S thành 1 nhóm ta được
S = (30 + 32) +( 32 + 34) +....+ ( 32000+32002)
S = 28 + 32.( 1+32) +....+ 32000.( 1+32)
S = 28 + 32. 28 +....+ 32000.28
S = 28 .( 1 + 32+....+32000)
vì 28 ⋮ 7 ⇒ 28.( 1 + 32 +.....+ 32000) ⋮ 7
⇒ A = 30 + 32 + 34 +....+32002 ⋮ 7 (đpcm)
A = (2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+(2^10+2^11+2^12)
= 2.(1+2+2^2)+2^4.(1+2+2^2)+2^7.(1+2+2^2)+2^10.(1+2+2^2)
= 2.7+2^4.7+2^7.7+2^10.7
= 7.(2+2^4+2^7+2^10) chia hết cho 7
Tk mk nha
A = 2 + 22 + 23 + 24 + . . . + 212
A = ( 2 + 22 + 23 ) + . . . + ( 210 + 211 + 212 )
A = 2 . ( 1 + 2 + 22 ) + . . . + 210 . ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + . . . + 210 . 7
A = 7 . ( 2 + 24 + . . . + 510 ) \(⋮\)7
=> A \(⋮\)7