Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\dfrac{x^2}{x+1}=\dfrac{x^2+2x+1-2x-1}{x+1}=\dfrac{\left(x+1\right)^2-2x-2+1}{x+1}\)
\(=\dfrac{\left(x+1\right)^2-2\left(x+1\right)+1}{x+1}=x+1-2+\dfrac{1}{x+1}=x-1+\dfrac{1}{x+1}\)
- Để A là số nguyên .
\(\Leftrightarrow x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-2\right\}\)
Vậy ...
2.\(P=\frac{x+1}{2x+5}+\frac{x+2}{2x+4}+\frac{x+3}{2x+3}\)
\(=\frac{x+1}{2x+5}+1+\frac{x+2}{2x+4}+1+\frac{x+3}{2x+3}+1-3\)
\(=\frac{3x+6}{2x+5}+\frac{3x+6}{2x+4}+\frac{3x+6}{2x+3}-3\)
\(=\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\)
Áp dụng BĐT Cô-si ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân vế với vế của 3 BĐT trên ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\)
Áp dụng BĐT \(\left(1\right)\)ta được:
\(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\ge\frac{9}{6x+12}\)
\(\Leftrightarrow\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\ge3\left(x+2\right).\frac{9}{6\left(x+2\right)}-3\)
\(\Leftrightarrow P\ge\frac{3}{2}\left(đpcm\right)\)
\(3x\left(x+2\right)-20x-40=0\)
\(\Rightarrow3x\left(x+2\right)-20\left(x+2\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=2\\x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}}\)
Vậy \(x=\left\{\frac{2}{3};-2\right\}\)