K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

\(C=\left(x+3y\right)\left(x^2-3xy+9y^2\right)-\left(x-2y\right)\left(x^2+2xy+4y^2\right)-2\left(17y^3-x^3\right)\\ C=\left(x^3+27y^3\right)-\left(x^3-8y^3\right)-2\left(17y^3-x^3\right)\\ C=x^3+27y^3-x^3+8y^3-34y^3+2x^3\\ C=2x^3+y^3\\ \\ \)Thay x = 4 và y = 2 vào C ta được:

\(\\ C=2.4^3+2^3\\ C=128+8\\ C=136\)

Vậy giá trị của biểu thức C tại x = 4 và y = 2 là 136

13 tháng 3 2020

Em cảm ơn ạ

17 tháng 6 2017

b1:

câu a,f áp dụng a2-b2=(a-b)(a+b)

câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)

câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)

câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)

câu g xem lại đề

17 tháng 6 2017

b2:

\(f\left(x;y\right)=x^2+y^2-6x+5y+9=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu "=" xảy ra khi x=3 và y=-5/2

câu c làm tương tự

21 tháng 7 2017

a) \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)

b) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2\)

\(=x^4-\dfrac{4}{25}y^2\)

c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+3y.x+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3=x^3-27y^3\)

d) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)

e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)

\(=\left(x^2\right)^3-3^3=x^6-27\)

17 tháng 7 2018

\(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64\)

\(=x^3+64\)

\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^2+3x^2y+9xy^2-3x^2y-9xy^2-27y^3\)

\(=\)\(x^2-27y^3\)

\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3xy}+4y^2\right)\)

\(=\)\(\frac{x^3}{27}-\frac{2}{9xy}+\frac{4xy^2}{3}+\frac{2x^2y}{9}-\frac{4y}{3xy}+8y^3\)

làm nốt nha

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

6 tháng 10 2018

a) \(\left(x+4\right)\left(x^2-4x+16\right)\)

\(x^3-4x^2+16x+4x^2-16x+64\)

\(=x^3+64\)

\(=x^3+4^3\)

\(=\left(x+4\right)\left(x^2-4x+16\right)\)

b) \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)

\(=\frac{1}{27}x^3-\frac{2}{9}x^2y+\frac{4}{3}xy^2+\frac{2}{9}x^2y-\frac{4}{3}xy^2+8y^3\)

\(=\frac{1}{27}x^3+8y^3\)

\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)

\(=\left(\frac{1}{3}x+2y\right)[\left(\frac{1}{3}x\right)^2-(\frac{1}{3}x.2y)+\left(2y\right)^2]\)

\(=\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)

Câu  c và d tương tự .

6 tháng 10 2018

cảm ơn bạn nhé

26 tháng 2 2020

d, Ta có : \(\frac{x^3+4x^2-x-4}{x+4}\)

\(=\frac{x^2\left(x+4\right)-\left(x+4\right)}{x+4}=\frac{\left(x^2-1\right)\left(x+4\right)}{x+4}=x^2-1\)

- Thay \(x=-2\frac{1}{3}\) vào biểu thức trên ta được :

\(\left(-2\frac{1}{3}\right)^2-1=\frac{58}{9}\)

Vậy biểu thức có giá trị là \(\frac{58}{9}\) tại \(x=-2\frac{1}{3}\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm