Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết, ta có:
\(x^3+y^3=4028\left(x^2-xy+y^2\right)\Leftrightarrow\frac{x^3+y^3}{x^2-xy+y^2}=4028\Leftrightarrow\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2-xy+y^2}=4028\Leftrightarrow x+y=4028\)
Lại có: \(x-y=2\)
nên \(x+y+x-y=4028+2\Leftrightarrow2x=4030\Leftrightarrow x=2015\)
Dễ dàng suy ra được \(y=2013\)
Vậy, \(x=2015;y=2013\)
câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)
câu 2: mình tạm chỉnh lại đề tý
\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)
câu 3:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)
Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010
câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)
thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)
\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)
4. (x + y + z)3 - x3 - y3 - z3 = x3 + y3 + z3 + 3(x + y)(y + z)(x + z) - x3 - y3 - z3
= 3(x + y)(y + z)(x + z)
2. x8 + x + 1 = (x8 - x5) + (x5 - x2) + (x2 + x + 1 )
= x5(x3 - 1) + x2(x3 - 1) + (x2 + x + 1 )
= x5(x - 1)(x2 + x + 1 ) + x2(x - 1)(x2 + x + 1 ) + (x2 + x + 1 )
= (x2 + x + 1 )[ x5(x - 1) + x2(x - 1) + 1]
= (x2 + x + 1 )(x6 - x5 + x3 - x2 + 1)
b: \(=\left(x+3+y\right)\left(x+3-y\right)\)
c: \(=x\left(9x^2-6xy+y^2\right)=x\left(3x-y\right)^2\)
d: \(=\left(xy+6\right)\left(x^2y^2-6xy+36\right)\)
e: \(=\left(x+y-3\right)\left(x^2+2xy+y^2+3x+3y+9\right)\)
sai đề bài rồi x^2 - xy + y^2 = 19 chứ sao là x^2 - xy = 19