K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.

1.

\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)

vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)

Thay vào đẳng thức ta được:

\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)

6 tháng 1 2019

k sao đâu bạn mình cảm ơn ạ

9 tháng 7 2020

- Để phương trình có nghiệm duy nhất :

<=> \(\frac{m-1}{2m}\ne\frac{-1}{-1}\ne1\)

<=> \(m-1\ne2m\)

<=> \(m\ne-1\)

- Ta có : \(\left\{{}\begin{matrix}\left(m-1\right)x-y=-1\\2mx-y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-\frac{y\left(m-1\right)}{m-1}=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2m\left(y-1\right)-y\left(m-1\right)=m-1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2my-2m-my+y-m+1=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{\frac{3m-1}{m+1}-1}{m-1}=\frac{\frac{3m-1-m-1}{m+1}}{m-1}=\frac{\frac{2m-2}{m+1}}{m-1}=\frac{2\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{2}{m+1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)

Ta có : \(\left(\frac{2}{m+1}\right)^2+\left(\frac{3m-1}{m+1}\right)^2< 5\)

=> \(\frac{4+9m^2-6m+1-5m^2-10m-5}{m^2+2m+1}< 0\)

=> \(\frac{4m^2-16m}{m^2+2m+1}< 0\)

=> \(4m\left(m-4\right)< 0\)

=> \(\left\{{}\begin{matrix}m>0\\m< 4\end{matrix}\right.\) or \(\left\{{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\)

=> \(0< m< 4\) or \(4< m< 0\left(l\right)\)

Vậy ....

NV
29 tháng 2 2020

Có lẽ bạn ghi nhầm đề, nhìn cái pt đầu tiên thực sự là kì quặc

Để pt có nghiệm duy nhất thì \(m\ne0\)

\(m+my=3m\Rightarrow y=2\)

\(\Rightarrow mx-2=m^2-2\Rightarrow x=m\)

\(x^2-2x-y>0\Leftrightarrow m^2-2m-2>0\)

\(\Leftrightarrow\left(m-1\right)^2>3\Leftrightarrow\left[{}\begin{matrix}m-1>\sqrt{3}\\m-1< -\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m>\sqrt{3}+1\\m< 1-\sqrt{3}\end{matrix}\right.\)

NV
29 tháng 2 2020

Pt luôn luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}x+my=3m\\m^2x-my=m^3-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m^3+m}{m^2+1}=m\\y=2\end{matrix}\right.\)

Thật kì diệu, kết quả vẫn y hệt như bên trên, nên bạn chỉ cần nối đoạn sau vào là được =))

13 tháng 3 2018

Thỏa mãn cái gì

11 tháng 5 2021

`x+my=m+1=>x=m+1-my` thế vào dưới

`=>m(m+1-my)+y-3m+1=0`

`<=>m^2+m-my^2+y-3m-1`

`=>y(1-m^2)=2m-1-m^2`

Hệ có no duy nhất

`=>1-m^2 ne 0=>m ne +-1`

`=>y=(-1+2m-m^2)/(1-m^2)=(m-1)/(m+1)`

`=>x=m+1-my=((m+1)^2-m(m-1))/(m+1)=(3m+1)/(m+1)`

`=>xy=((3m+1)(m-1))/(m+1)^2=(3m^2-2m-1)/(m+1)^2`

Xét `xy+1`

`=(3m^2-2m-1+m^2+2m+1)/(m+1)^2=(4m^2)/(m+1)^2`

`=>xy+1>=0=>xy>=-1`

Dấu "=" xảy ra khi `m=0`

1 tháng 11 2019

pt (1) <=>\(x=2+my-4m\) thay vào pt (2) có:

\(\left(2+my-4m\right)m+y=3m+1\)

<=>\(y\left(m^2+1\right)=m+4m^2+1\) (3)

Để hpt có nghiệm <=> pt (3) có nghiệm

<=> \(m^2+1\ne0\) (luôn đúng với mọi m)

=> pt (3) có nghiệm duy nhất => hpt có nghiệm duy nhất với mọi m.

Do x0,y0 là 1 nghiệm của hệ => \(\left\{{}\begin{matrix}x_0-my_0=2-4m\\my_0+y_0=3m+1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(3-x_0\right)\left(y_0-4\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(3-x_0\right)\left(y_0-4\right)\end{matrix}\right.\)

=>\(\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)

<=>\(5x_0-x_0^2-6=y_0^2-5y_0+4\)

<=>\(x^2_0+y^2_0-5\left(y_0+x_0\right)+10=0\)

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}mx+m^2y=m^2+m\\mx+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(m^2-1\right)=m^2+m-3m+1\\x+my=m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-2m+1}{\left(m-1\right)\left(m+1\right)}=\dfrac{\left(m-1\right)^2}{\left(m-1\right)\cdot\left(m+1\right)}=\dfrac{m-1}{m+1}\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-\dfrac{m^2-m}{m+1}=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)

Để x,y đều là số nguyên thì \(\left\{{}\begin{matrix}m-1⋮m+1\\3m+1⋮m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m+1-2⋮m+1\\3m+3-2⋮m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2⋮m+1\\-2⋮m+1\end{matrix}\right.\)

=>\(m+1\in\left\{1;-1;2;-2\right\}\)

=>\(m\in\left\{0;-2;1;-3\right\}\)

mà \(m\notin\left\{1;-1\right\}\)

nên \(m\in\left\{0;-2;-3\right\}\)