K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2015

xét các th

th1)n=3k (k thuộc N)

=>3^2n+3^n+1=3^2.3k+3^3k+1

=531441^k+27^k+1

do 531441 đồng dư với 1 (mod 13)=>531441^k đồng dư với 1(mod 13)

27 đồng dư với 1 (mod13)=>27^k đồng dư với 1(mod13)

1 đồng dư với 1(mod 13)

=>531441^k+27^k+1 đồng dư với 1+1+1=3(mod13)

=>531441^k+27^k+1 chia 13 dư 3<=>3^2n+36n+1 chia 13 dư 3

th2)n=3k+1(k thuộc N)

=>3^2n+3^n+1=3^2.(3k+1)+3^3k+1+1

=9^3k+1 +27^k.3+1

=729^k.9 +27^k.3+1

729^k.9 đồng dư với 9(mod 13)

27^k.3 đồng dư với 2 (mod 13)

1 đồng dư với 1 (mod13)

=>729^k.9+27^k.3+1 đồng dư vơi 1+9+2=13=0(mod 13)

=>3^2n+3^n1 chia hết cho 13

th3)n=3k+2

=>=9^3k+2 +3^3k+2 +1=729^k.81+27^k.9+1

729^k.81 đồng dư với 3 (mod 13)

27k.9 đồng dư với 9(mod 13)

1 đồng dư với 1(mod 13)

=>729^k.81+27^k.9+1 đồng dư với 3+9+1=13(mod 13)

=>3^2n +3^n+1 chia hết cho 13

vậy với n =3k+1 hoặc 3k+2 (k thuộc N) thì 3^2n +3^n +1 chia hết cho 13

2 tháng 6 2015

Xét n=3k, k\(\in\)|N

32n + 3n + 1 = 36k + 33k +1 

                    = 33.2k + 33k +1

                    =(33)2k + 33k +1

                    =272k + 27k +1

27 đồng dư với 1 (mod 13)

=> 27k đồng dư với 1k (mod 13)

=>272k đồng dư với 12k (mod 13)

=>272k + 27k +1 đồng dư với 3 (mod 13)

=> 3k ko chia hết cho 13.

Xét n=3k+1, k\(\in\)|N

32n + 3n + 1= 36k+1 + 33k+1 +1

                   = (32)3k.3 + 33k . 3 +1

                   = 9.272k.3+27k.3+1

đồng dư với 13 (mod 13)

=> 9.272k.3+27k.3+1 chia hết cho 13.

=>3k+1 chia hết cho 13

Xét 3k+2, k\(\in\)|N

32n + 3n + 1=36k+2 + 33k+2 +1

                   =81k.9+27k.9+1

đồng dư với 91 (mod 13)

=>32n + 3n + 1 chia hết cho 13

=> 3k+2 chia hết cho 13.

Vậy n=3k+1 hoặc 3k+2 chia hết cho 13.

 

 

11 tháng 4 2016

Ta có: 3012 =  13.231 + 9

Do đó: 3012 đồng dư với 9 ( mod 13)

\(=>3012^3\) đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\) đồng dư với 1 ( mod 13)

=> \(3012^3\) đồng dư với 1 ( mod 13)

\(=>\left(3012^3\right)^{31}\) đồng dư với 1 ( mod 13)

\(hay3012^{93}\) đồng dư với 1 ( mod 13)

=> \(3012^{93}-1\) đồng dư với 0 ( mod 13)

hay \(3012^{93}\) chia hết cho 13 ( đpcm)

25 tháng 8 2017

tks nhé bạn hiền