Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau a : (3x^2y-6xy+9x)(-4/3xy)
=-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x
=-4x+8-8y
cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)
=(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3
=(1/3)^3 + (2y)^3x-2
cau c : (x-2)(x^2-5x+1)+x(x^2+11)
=x^3-5x^2+x-2x^2+10x-2+x^3+11x
=2x^3-7x^2+22x-2
cau d := x^3 + 6xy^2 -27y^3
cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y
cau f := x^2-2x+2x -4-2x-1
= x(x-2)-5
a) (x-1)(5x+3)=(3x-8)(x-1)
= (x-1)(5x+3)-(3x-8)(x-1)=0
=(x-1)[(5x+3)-(3x-8)]=0
=(x-1)(5x+3-3x+8)=0
=(x-1)(2x+11)=0
\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0
\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)
Vậy S={1;\(\dfrac{-11}{2}\)}
b) 3x(25x+15)-35(5x+3)=0
=3x.5(5x+3)-35(5x+3)=0
=15x(5x+3)-35(5x+3)=0
=(5x+3)(15x-35)=0
\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0
\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)
Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}
c) (2-3x)(x+11)=(3x-2)(2-5x)
=(2-3x)(x+11)-(3x-2)(2-5x)=0
=(3x-2)[(x+11)-(2-5x)]=0
=(3x-2)(x+11-2+5x)=0
=(3x-2)(6x+9)=0
\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0
\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)
Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}
d) (2x2+1)(4x-3)=(2x2+1)(x-12)
=(2x2+1)(4x-3)-(2x2+1)(x-12)=0
=(2x2+1)[(4x-3)-(x-12)=0
=(2x2+1)(4x-3-x+12)=0
=(2x2+1)(3x+9)=0
\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0
\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3
Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}
e) (2x-1)2+(2-x)(2x-1)=0
=(2x-1)[(2x-1)+(2-x)=0
=(2x-1)(2x-1+2-x)=0
=(2x-1)(x+1)=0
\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0
\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1
Vậy S={\(\dfrac{-1}{2}\);-1}
f)(x+2)(3-4x)=x2+4x+4
=(x+2)(3-4x)=(x+2)2
=(x+2)(3-4x)-(x+2)2=0
=(x+2)[(3-4x)-(x+2)]=0
=(x+2)(3-4x-x-2)=0
=(x+2)(-5x+1)=0
\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0
\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)
Vậy S={-2;\(\dfrac{1}{5}\)}
a)\(9x^2+30x+25+9x^2-30x+25-\left(9x^2-2^2\right)\)
=\(9x^2+54\)=\(9\left(x^2+6\right)\)
b)\(2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
=\(8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
=\(x^3-16x^2+25x\)
c)\(\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)
=\(\left(x+y-z-\left(x+y\right)\right)^2\)=\(\left(-z\right)^2\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
rút gọn biểu thức
a)2x(2x−1)2−3x(x+3)(x−3)−4x(x+1)2
=2x(4x2-4x+1)-3x.(x2-9)-4x(x2+2x+1)
=8x3-8x2+2x-3x3-27x-4x3-8x2-4x
=8x3-16x2-7x3-29x
a) \(\left(1+x\right)^2+\left(1-x\right)^2\)
\(=1+2x+x^2+1-2x+x^2\)
\(=2x^2+2\)
b) \(\left(x+2\right)^2+\left(1+x\right)\left(1-x\right)\)
\(=x^2+4x+4+1-x^2\)
\(=4x+5\)
c) \(\left(x-3\right)^2+3\left(x+1\right)^2\)
\(=x^2-6x+9+3x^2+6x+3\)
\(=4x^2+12\)
d)\(\left(2+3x\right)\left(3x-2\right)-\left(3x+1\right)^2\)
\(=9x^2-4-9x^2-6x-1\)
\(=-6x-5\)
e) \(\left(x+5\right)\left(x-2\right)-\left(x+2\right)^2\)
\(=x^2-2x+5x-10-x^2-4x-4\)
\(=-x-14\)
f) \(\left(x+3\right)\left(2x-5\right)-2\left(1+x\right)^2\)
\(=2x^2-5x+6x-15-2-4x-2x^2\)
\(=-3x-17\)
g) \(\left(4x-1\right)\left(4x+1\right)-4\left(1-2x\right)^2\)
\(=16x^2-1-4+16x-16x^2\)
\(=16x-5\)
#Học tốt!