Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, 2sin3xcosx=sin6x
<=> 2sin3x(cosx-cos3x)=0
<=> sin3x=0 hoặc cosx=cos3x
<=> x=k2π/3 hoặc x=π/3 + k2π/3 ; x=kπ hoặc x= kπ/2
d, sin3x/2.cosx/2 = cos3x/2.cosx/2
<=>cosx/2.(sin3x/2 - cos3x/2) =0
<=> cosx/2=0 hoặc sin3x/2 = cos3x/2
<=>x=π+4kπ hoặc x= -π+4kπ ; x=π/6 +k2π/3
7.
ĐKXĐ: \(x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow8cosx=\frac{\sqrt{3}cosx+sinx}{sinx.cosx}\)
\(\Leftrightarrow8cosx.sinx.cosx=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow4sin2x.cosx=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow2sin3x+2sinx=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow2sin3x=\sqrt{3}cosx-sinx\)
\(\Leftrightarrow sin3x=\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx\)
\(\Leftrightarrow sin\left(-3x\right)=sin\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x=x-\frac{\pi}{3}+k2\pi\\-3x=\frac{4\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{2\pi}{3}+k\pi\end{matrix}\right.\)
5.
\(sin\left(2x+\frac{\pi}{2}+2\pi\right)-2cos\left(x+\frac{\pi}{2}-4\pi\right)=1+2sinx\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)-2cos\left(x+\frac{\pi}{2}\right)=1+2sinx\)
\(\Leftrightarrow cos2x+2sinx=1+2sinx\)
\(\Leftrightarrow cos2x=1\)
\(\Rightarrow x=k\pi\)
6.
\(sin^22x-cos^28x=sin\left(10x+\frac{\pi}{2}+8\pi\right)\)
\(\Leftrightarrow\frac{1-cos4x}{2}-\frac{1+cos16x}{2}=sin\left(10x+\frac{\pi}{2}\right)\)
\(\Leftrightarrow-\left(cos4x+cos16x\right)=2cos10x\)
\(\Leftrightarrow-2cos10x.cos6x=2cos10x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos10x=0\\cos6x=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}10x=\frac{\pi}{2}+k\pi\\6x=\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{6}+\frac{k\pi}{3}\end{matrix}\right.\)
a)cosxcos5x=cos2xcos4x
\(\Leftrightarrow cos6x+cos4x=cos6x+cos2x\)
\(\Leftrightarrow cos4x=cos2x\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=k\pi\\x=k\frac{\pi}{3}\end{array}\right.\)