K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

a) \(x^2+y^2=0\)  ( 1 ) 

Ta có : 

\(x^2\ge0\forall x\)                                                                 

\(y^2\ge0\forall x\)     

Để ( 1 ) = 0 

\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\end{cases}}\)    

\(\hept{\begin{cases}x=0\\y=0\end{cases}}\)    

\(x^2+y^2=0\)   với \(x=y=0\) là mệnh đề đúng 

\(x^2+y^2=0\)  với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\)  là mệnh đề sai 

b) \(x^2+y^2\ne0\) ( 2 ) 

Vì \(x^2\ge0\forall x\) 

\(y^2\ge0\forall y\)   

Nên \(x^2+y^2\ne0\Leftrightarrow\orbr{\begin{cases}x^2\ne0\\y^2\ne0\end{cases}}\)    

\(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) 

\(x^2+y^2\ne0\)    với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) là mệnh đề đúng 

\(x^2+y^2\ne0\)    với \(\hept{\begin{cases}x=0\\y=0\end{cases}}\) là mệnh đề sai 

24 tháng 8 2020

đéo bít

13 tháng 4 2016

a) Mệnh đề sai;

b) Mệnh đề chứa biến;

c) Mệnh đề chứa biến;

d) Mệnh đề đúng.

2 tháng 4 2017

a) Mệnh đề sai;

b) Mệnh đề chứa biến;

c) Mệnh đề chứa biến;

d) Mệnh đề đúng.


22 tháng 7 2021

a, Mệnh đề sai

b, Mệnh đề chứa biến

c, Mệnh đề chứa biến

d, Mệnh đề đúng

5 tháng 9 2020

E mới c2 nên cg ch am hiểu lắm nên thôi lm đại nhé:))

Ta có: \(x^2+xy+y^2=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\left(\forall x,y\right)\)

Vì nếu \(x=y=0\) => \(x^2+xy+y^2=0\)

=> Mệnh đề sai 

Chỉ đúng ở phần không âm

18 tháng 8 2020

thì phân tích thành nhân tử là oke

\(x^2+x+1>0\)

\(\Leftrightarrow x^2+x+\frac{1}{4}+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)*đúng*

Ta có:\(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\in R\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(đpcm\right)\)

30 tháng 8 2019

Đặt \(x^2=a\ge0;y^2=b\ge0\)

Ta có BĐT phụ:\(4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)

Ta có:\(\frac{4ab}{\left(a+b\right)^2}+\frac{a}{b}+\frac{b}{a}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2}+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=3\) ( BĐT AM-GM )

Ta có đpcm

26 tháng 9 2019

Câu 2:

\(\frac{a^2b}{2a^3+b^3}-\frac{1}{3}+1-\frac{a^2+2ab}{2a^2+b^2}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{2a^2+b^2}-\frac{\left(a-b\right)^2\left(2a+b\right)}{3\left(2a^3+b^3\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{2a^2+b^2}-\frac{\left(2a+b\right)}{3\left(2a^3+b^3\right)}\right]\ge0\)

\(\Leftrightarrow\frac{2\left(a-b\right)^4\left(a+b\right)}{3\left(2a^2+b^2\right)\left(2a^3+b^3\right)}\ge0\left(ok!\right)\)

Em tính/ quy đồng/ phân tích thành nhân tử sai chỗ nào thì chị tự check nhá:)

8 tháng 7 2019

\(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì (x+1/2)^2 \(\ge\)0 nên (x+1/2)^2 +3/4 >0

hk tốt 

tk đi

Câu 3: 

a: Vì \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

nên P(x) luôn là mệnh đề đúng

b: \(\Leftrightarrow x< =\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< =0\)

\(\Leftrightarrow\sqrt{x}-1< =0\)

=>0<=x<=1