Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (3x-2)^2-(x+3)^2
= 9x^2 - 12x + 4 - x^2 - 6x - 9
= 8x^2 - 18x - 5
B = (5x+3)^2+(x-2)^2
= 25x^2 + 30x + 9 + x^2 - 4x + 4
= 26x^2 +26x +13
C = (2x+y-3)^2-(x+2y+3)^2
= (2x + y)^2 - 6(2x + y) + 9 - (x + 2y)^2 - 6(x + 2y) - 9
= 4x^2 + 4xy + y^2 - 12x - 6y - x^2 - 4xy - 4y^2 - 6x - 12y
= 3x^2 - 3y^2 -18x - 18y
D = (x+2y+3z)^2 -(x-2y-3z)^2
= (x + 2y)^2 + 6z(x + 2y) + 9z^2 - (x - 2y)^2 + 6z(x - 2y) - 9z^2
= x^2 + 4xy + y^2 + 6xz + 12yz - x^2 + 4xy - y^2 + 6xz - 12yz
= 8xy + 12xz
a: \(=\left(a-b\right)^2-\left(c+d\right)^2\)
\(=a^2-2ab+b^2-c^2-2cd-d^2\)
b: \(=\left(x+3z\right)^2-4y^2\)
\(=x^2+6xz+9z^2-4y^2\)
c: \(=\left(x^3-1\right)\left(x^3+1\right)=x^6-1\)
a . \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)
b . \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)
c . \(\left(y+2z-3\right)\left(y-2z-3\right)=\left(y-3\right)^2-\left(2z\right)^2\)
d . \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
A=(a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
A =(a+1)(a-1)(a+2)(a-2)(a^2+4)(a^2+1)
A =(a^2-1)(a^2+1)(a^2-4)(a^2+4)
A =(a^4-1)(a^4-16)
A =\(a^{16}-16\cdot a^4-a^4+16\)
A =\(a^{16}-17\cdot a^4+16\)
B=(a+2b-3c-d)(a+2b+3c+d)
B=[(a+2b)^2 - (3c +d)^2]
B=[a^2+4ab+4b^2-(9c^2+6cd+d^2)]
B=a^3+4ab+4b^2 - 9c^2 - 6cd - d^2
C=(1-x-2x^3+3x^2)(1-x+2x^3-3x^2)
C=[(1-x)^2-(2x^3-3x^2)^2]
C=[(1-2x+x^2) - (4x^6-12x^5+9x^4)]
C=[1-2x-x^2-4x^6+12x^5-9x^4]
C=-4x^6+12x^5-9x^4-x^2-2x+1
D=(a^6-3a^3+9)(a^3+3)
D=a^9+27
a)x\(^2\)+10x+26+y\(^2\)+2y
=(^2+10x+25)+(y^2+2y+1)
=(x+5)^2+(y+1)^2
a. x2 + 10x + 26 + y2 + 2y
= x2 + 10x + 25 + y2 + 2y + 1
= (x + 5)2 + (y + 1)2 (Xem lại đề)
b. z2 - 6z + 5 - t2 - 4t
= z2 - 6z + 9 - t2 - 4t - 4
= (z - 3)2 - (t2 + 4t + 4)
= (z - 3)2 - (t + 2)2
c. (y + 2z - 3).(y - 2z - 3)
= (y - 3 + 2z).(y - 3 - 2z)
= (y - 3)2 - (2z)2
d. (x + 2y + 3z).(2y + 3z - x)
= (2y + 3z + x).(2y + 3z - x)
= (2y + 3z)2 - x2
a: \(=\left(a+b\right)^2-\left(c+d\right)^2\)
b: \(=\left(a-d\right)^2-\left(b-c\right)^2\)
c: \(=\left(x+3z\right)^2-4y^2\)
d: \(=\left(a^2-9\right)\left(a^2+9\right)=a^4-81\)
e: \(=\left(a-5\right)^2\cdot\left(a+5\right)^2=\left(a^2-25\right)^2\)