Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 52 . x = 62 + 82
\(5^2\cdot x=36+64\)
\(5^2\cdot x=100\)
\(x=100\div5^2\)
\(x=100\div25\)
\(x=4\)
b) ( 22 + 42 ) . x + 24 . 5 . x = 102
\(\left(4+16\right)\cdot x+16\cdot5\cdot x=100\)
\(x\cdot\left(20+80\right)=100\)
\(x\cdot100=100\)
\(x=100\div100\)
\(x=1\)
c ) 24 . x = 26
\(x=2^6\div2^4\)
\(x=2^{6-4}\)
\(x=2^2\)
\(x=4\)
d) 33 . x + 23 . x = 102
\(x\cdot\left(23+27\right)=100\)
\(x\cdot50=100\)
\(x=100\div50\)
\(x=2\)
e) 78 . x = 710
\(x=7^{10}\div7^8\)
\(x=7^{10-8}\)
\(x=7^2\)
\(x=49\)
+) \(A=3\left(x-4\right)^4-4\ge-4\)
Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)
Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
+) \(C=5+2018\left(2020-x\right)^2\)
Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)
+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)
Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)
Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Bài 4:
Ta có: 1975^430 có chữ tận cùng bằng 5; suy ra 1975^430+2004 có chữ số tận cùng bằng 9.
Mặt khác: 1980*z tận cùng bằng 0với mọi z . Giả sử tồn tại các số tự nhiên x;y;z thỏa mãn biểu thức đã cho thì 19^x+5^y phải có chữ số tận cùng bằng 9 (1)
Số 19^x chỉ tận cùng bằng 1 hoặc 9 với mọi x; 5^y có chữ số tận cùng bằng 1(y=0) hoặc 5
Nếu 19^x tận cùng bằng 1 thì theo (1) 5^y tận cùng bằng 8 ( vô lý)
Nếu 19^x tận cùng bằng 9 thì theo (1) 5^y tận cùng bằng 0 ( vô lý)
Vậy không tồn tai các số tự nhiên x;y;z để 19^x+5^y+1980*z= 1975^430+2004
cách 2
thành 1980 * z, và xét cả th số tự nhiên là 0), không biết bạn có sửa lại không
Tôi chẳng đăng ký bản quyền làm gì nhưng làm thế là rất xấu
---------------
Với tôi số tự nhiên là > 0. Nếu bạn có cả số 0 thì cũng được
19^x + 5^y + 1980 * z= 1975^430 + 2004 ♦
---
19^x chỉ tận cùng là 1 hoặc 9: 9^0 = 1, 9*9 = 8(1), 1*9 = 9
5^y chỉ tận cùng là 1 hoặc 5: 5^0 = 1, 5^n tận cùng là 5 với n ≥ 1
=> VT chỉ tận cùng là 0, 2, 4 hoặc 6
tương tự có VP tận cùng là 9
=> không tồn tại x, y, z sao cho tm ♦
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
1/
a. \(x^3-2=25\)
\(x^3=25+2\)
\(x^3=27\)
\(\Rightarrow x=3\)
b.\(\left(x-3\right)^2=25\)
\(\left(x-3\right)^2=5^2\)
\(\Rightarrow x-3=5\)
\(\Rightarrow x=8\)
1,a, x^3-2=25 b, (x-3)^2=25 c, x^3-x^2=55 d,[(8.x-12):4].3^7=3^10
x^3=27 (x-3)^2=5^2 không có giá trị x (8.x-12):4=3^3
x^3=3^3 x-3=5 8.x-12=108
x=3 x=8 8.x=120
x=15
2, a, \(7^6:7^4+3^4.3^2-3^7:3\) b, 1736-(21-16).32+6.7^2 c,56.17+17.44-4^3.5+6.(3^2-2)
=\(7^2+3^6-3^6\) =1736-5.32+6.49 =17.(56+44)-320+42
=\(49\) =1736-160+294 =17.10-278
=1736+134 =170-278
=1870 =-108
d, 3.10^2-[1200-(4^2-2.3)^3]
=300-[1200-(16-6)^3]
=300-(1200-10^3)
=300-(1200-1000)
=300-200
=100