K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

x= -3 hoặc 3

y= -4 hoặc 4

 

12 tháng 7 2019

 Ta có: P = 2(x + y6) - 3(x4 + y4)

 P = 2(x2 + y2)(x4 - x2y2 + y4) - 3x4 - 3y4

P = 2.1.(x4 - x2y2 + y4) - 3x4 - 3y4

P = 2x4 - 2x2y2 + 2y4 - 3x4 - 3y4

P = (2x4 - 3x4) - 2x2y2 + (2y4 - 3y4)

P = -x4 - 2x2y2 - y4

P = -(x4 + 2x2y2 + y4)

P = -(x2 + y2)2

P = -12 = -1

=> Biểu thức P ko phụ thuộc vào x với x2 + y2 = 1

c) Ta có(x-1)2 >= 0 với mọi x

(y+3)2>=0 với mọi c

=> (x-1)2+(y+3)2 >= 0 với mọi x,y

Dấu bằng xảy ra khi và chỉ khi

(x-1)2=0 và (y+3)2=0

=> x=1 và y=-3

16 tháng 7 2019

\(A=\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)\left(5x+4\right)^2\)

\(=\left(5x-1\right)-2\left(5x-1\right)\left(5x+4\right)^3\)

\(=\left(5x-1\right)\left(1-2\left(5x+4\right)^3\right)\)

\(=\left(5x-1\right)\left(1-2\left(125x^3+300x^2+240x+64\right)\right)\)

\(=\left(5x-1\right)\left(1-250x^3-600x^2-480x-128\right)\)

\(=5x-1250x^4-3000x^3-2400x^2-640x-1+250x^3+600x^2+480x+128\)

\(=-1250x^4-2750x^3-1800x^2-110x+127\)

(Số hơi to)

\(B=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)

\(B=\left(x-y\right)^3+\left(y+x\right)^3-\left(x-y\right)^3-3xy\left(x+y\right)\)

\(B=\left(y+x\right)^3-3xy\left(x+y\right)\)

\(B=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

\(B=\left(x+y\right)\left[x^2+2xy+y^2-3xy\right]\)

\(B=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

18 tháng 7 2019

thánh lầy :)) soi bài

18 tháng 7 2019

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow x=3k;y=4k;z=5k\)

Khi đó:\(5z^2-3x^2-2y^2=594\) trở thành:

\(5\cdot25k^2-3\cdot9k^2-2\cdot16k^2=594\)

\(125k^2-27k^2-32k^2=594\)

\(66k^2=594\)

\(k^2=9\)

\(k=\pm3\)

Bạn thay vào rồi tính