\(P=\dfrac{\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2022

\(P=1-\dfrac{5}{\sqrt{x}+2}\)

để P đạt Max => \(-\dfrac{5}{\sqrt{x}+2}\) đạt Max => x đạt Max

mà x>3 và x thuộc N => không có gtri của x để thỏa mãn Max P 

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

AH
Akai Haruma
Giáo viên
22 tháng 5 2022

Lời giải:
\(P=\frac{2(\sqrt{x}+2)+2}{\sqrt{x}+2}=2+\frac{2}{\sqrt{x}+2}\)

Với $x>3$ và $x$ là số tự nhiên thì $x\geq 4$

$\Rightarrow \sqrt{x}+2\geq \sqrt{4}+2=4$

$\Rightarrow \frac{2}{\sqrt{x}+2}\leq \frac{1}{2}$

$\Rightarrow P\leq 2+\frac{1}{2}=\frac{5}{2}$

Vậy $P_{\max}=\frac{5}{2}$ khi $x=4$

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)
21 tháng 3 2020

\(P=\sqrt{x+1}+\sqrt{y+1}\ge\sqrt{x+1+y+1}=\sqrt{x+y+2}=\sqrt{101}\)

GTNN\(P=\sqrt{101}\)

\(P=\sqrt{x+1}+\sqrt{y+1}\)

\(=>\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\le2\left(x+1+y+1\right)=2.101=202\)

GTLN \(P=202\)

3 tháng 2 2020

\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)

\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)

4 tháng 2 2020

2/\(LHS\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{1+b+c}{3}+\frac{1+c+a}{3}+\frac{1+a+b}{3}}=\frac{3}{2}\)