K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

\(\sqrt{x^3}-\sqrt{x}=\sqrt{x}\left(\sqrt{x}^2-1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)đk : \(x>0\)

\(\sqrt{a^3}+a=a\left(\sqrt{a}+1\right)\)đk: \(a>0\)

có sai xót mong mn bỏ qa cho

NM
19 tháng 7 2021

a. ĐKXĐ: 

\(\hept{\begin{cases}\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}}\)

b. ta có \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

c. khi \(x=\frac{1}{4}\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow A=\frac{\frac{1}{2}+1}{\frac{1}{2}}=3\)

khi \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{2}+1\Rightarrow A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}=\sqrt{2}\)

19 tháng 7 2021

\(a,ĐKXĐ:A=x\ge0;x\ne1\)

\(b,A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x}+1}{\sqrt{x}}< =>ĐPCM\)

c,thay \(x=\frac{1}{4}\)vào A

\(c,A=\frac{\sqrt{\frac{1}{4}}+1}{\sqrt{\frac{1}{4}}}\)

\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}}\)

\(A=3\)

\(x=3+2\sqrt{2}\)

\(x=\sqrt{2}^2+2\sqrt{2}+1\)

\(x=\left(\sqrt{2}+1\right)^2\)thay x vào A

\(A=\frac{\sqrt{\left(\sqrt{2}+1\right)^2}+1}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}\)

\(A=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(A=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)

24 tháng 7 2018

a, \(A=\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{6\sqrt{x}-9}{x-3\sqrt{x}}\) (ĐKXĐ: \(x\ne9\)và \(x\ne0\),\(x>0\))

\(=\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{6\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{x-6\sqrt{x}+9}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}}\)

b, ĐKXĐ: \(x\ne9\)và \(x\ne0\)

\(A=\frac{\sqrt{x}-3}{\sqrt{x}}=1-\frac{3}{\sqrt{x}}\)

Để \(A\inℤ\Leftrightarrow1-\frac{3}{\sqrt{x}}\inℤ\Leftrightarrow\frac{3}{\sqrt{x}}\inℤ\Leftrightarrow\sqrt{x}\inƯ\left(3\right)\Leftrightarrow x\in\left\{1;3\right\}\left(TM\right)\)

Vậy với \(x\in\left\{1;3\right\}\)thì A nguyên.

Sai ở đâu thì nhớ báo mình nhé.

15 tháng 8 2021

a, Với x > 0 

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1}{x+\sqrt{x}}=\frac{x-1+1}{x+\sqrt{x}}=\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

b, Ta có : \(A>\frac{2}{3}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{2}{3}>0\Leftrightarrow\frac{3\sqrt{x}-2\sqrt{x}-2}{3\left(\sqrt{x}+1\right)}>0\)

\(\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)

c, \(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}+3}{2\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}+2}=\frac{2\sqrt{x}+6}{2\sqrt{x}+2}=1+\frac{4}{2\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+1}\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\sqrt{x}+1\)12
\(\sqrt{x}\)0 (loại )1
xloại1
12 tháng 8 2021

đk  x khác 9, x >= 0

\(p=\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{5\sqrt{x}-3}{x-9}\)

\(p=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}-\frac{5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(p=\frac{x+2\sqrt{x}-3-5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(p=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(p=\frac{\sqrt{x}}{\sqrt{x}+3}\)

b, P.(căn x + 3) = |x - 2|

có P = căn x/ căn x + 3

=> căn x = |x - 2|

=> x = |x - 2|^2

=> x = x^2 - 4x + 4

=> x^2 - 5x + 4 = 0

=> (x-1)(x-4) = 0

=> x = 1 hoặc x = 4 (tm)

vậy x = 1 hoặc x = 4

18 tháng 5 2021

                  Bài làm :

a) ĐK : x ≠ 9 và x ≥0

b) ĐK : x ≠ ± 2 và x≤-2 ; 2≤x

6 tháng 7 2019

Đề sai hả bạn??Xem lại đề đi