Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2 - 5x + 3
= 2x2 - 2x - 3x + 3
= 2x( x - 1 ) - 3( x - 1 )
= ( x - 1 )( 2x - 3 )
= ( x + 1 - 2 )[ 2( x + 1 ) - 5 ] (*)
Đặt y = x + 1
(*) trở thành
( y - 2 )( 2y - 5 )
= 2y2 - 5y - 4y + 10
= 2y2 - 9y + 10
a) x2 - 4x + 2 = (x2 - 4x + 4) - 2 = (x - 2)2 - 2 = \(\left(x-2+\sqrt{2}\right)\left(x-2-\sqrt{2}\right)\)
b) x2 - 12x + 11 = x2 - x - 11x + 11 = x(x - 1) - 11(x - 1) = (x - 1)(x - 11)
c) 3x2 + 6x - 9 = 3x2 - 3x + 9x - 9 = 3x(x - 1) + 9(x - 1) = (3x + 9)(x - 1) = 3(x + 3)(x - 1)
d) 2x2 - 6x + 2 = 2(x2 - 3x + 1) = 2(x2 - 3x + 9/4 - 5/4) = 2[(x - 3/2)2 - 5/4] = \(2\left(x-\frac{3}{2}+\sqrt{\frac{5}{4}}\right)\left(x-\frac{3}{2}-\sqrt{\frac{5}{4}}\right)\)
1.
a) \(x^2-4x+2=\left(x^2-4x+4\right)-2=\left(x-2\right)^2-2=\left(x-2-\sqrt{2}\right)\left(x-2+\sqrt{2}\right)\)
b) \(x^2-12x+11=\left(x^2-12x+36\right)-25=\left(x-6\right)^2-5^2=\left(x-6-5\right)\left(x-6+5\right)=\left(x-11\right)\left(x-1\right)\)
c) \(3x^2+6x-9=3\left(x^2+2x-3\right)=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2-6x+2=2\left(x^2-3x+1\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]\)
\(=2\left(x-\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\)
1) \(\left(3x+7\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(3x+7-2x+3\right)\left(3x+7+2x-3\right)=0\)
\(\Leftrightarrow\left(x+10\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+10=0\\5x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-10\\x=\frac{-4}{5}\end{cases}}\)
Vạy ...
phần 2 tương tự áp dụng \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\((4x-1)^2-(5-3x)^2=0\)
\(\Leftrightarrow(4x-1-5-3x)(4x+1+5-3x)=0\)
\(\Leftrightarrow(x-6)(x+6)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Vậy : ...
a)
Ta có:
( x + 1 ) ( x + 3 ) ( x + 5 ) ( x + 7 ) + 2019
= [ ( x + 1 ) ( x + 7 ) ] . [ ( x + 3 ) ( x + 5 ) ] + 2019
= ( x2 + 8x + 7 )( x2 + 8x + 15 ) + 2019 ( 1 )
* Đặt x2 + 8x + 10 = a
thì ( 1 ) trở thành:
( a - 3 ) ( a + 5 ) + 2019
= a2 + 2a - 15 + 2019
= a ( a + 2 ) + 2004
=> Pt đã cho chia cho a = x2 + 8x + 10 dư 2004.
Vậy ..........
b)
- Vì x / (x2 - x + 1) = 1/5 => x2 - x + 1 = 5x
Ta có:
A = x2 / (x4 + x2 + 1)
A = x2 / [( x2 - x + 1 )( x2 + x + 1 )]
A = x2 / {5x . [( x2 - x + 1 ) + 2x ]}
A = x2 / [5x . ( 5x + 2x )]
A = x2 / ( 5x . 7x )
A = x2 / 35x2
A = 1/35
Vậy A = 1/35.
làm ơn giúp mình bài toán hình phần d với cảm ơn nhiều( hình lớp 7 đó)
(x-1)(x+1)(x+2)
=(x^2-1)(x+2)
=x^3+2x^2-x-2
[X-1/2] [X+1/2] [4X-1]
=\(\left(x^2-\frac{1}{4}\right)\left(4x-1\right)\)
=\(4x^3-x^2-x+\frac{1}{4}\)
1/2X2Y2 [2X+Y] [2X-Y]
=\(\frac{1}{2}x^2y^2\left(4x^2-y^2\right)\)
=\(2x^2y^2-\frac{1}{2}x^2y^4\)
Viết đa thức x^2 +3x+2 dưới dạng đa thức của x-1
Ta có : x^2+3x+2=x^2−2x+1+5x−5+6
=(x−1)^2+5(x−1)+6
nha bạn chúc bạn học tốt ạ