Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
1 số bất kì luôn viết = ( số chia hết cho 9 ) + ( tổng các chữ số của nó ) :123 = 13 .9 + ( 1+2+3)
11.....1 = 9 k + ( 1+1+.........1) = 9k +n
a) 10n +18n = 10n -1 + 18n +1 = 99...9(n c/s9) + 18n +1 = 9. 11...1 (n c/s 1) +18n+1 = 9 .( 9 k + (1+1+...+1 ) )+ 18n -1
= 9 ( 9k +n) +18n +1 = 81k + 27n +1 chia cho 27 dư 1
( đề thiếu - 1 nhé )
Câu sau tương tự
b1: 3 số TNLT là n, n+1, n+2
tổng 3 số TNLT là: n+ n+1 + n +2=( n + n+ n)+(1+2)=3n+3=3.(n+1) chia hết cho 3 (đpcm)
phần b làm như trên nhé
không cần quy nạp đâu