Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tham khảo ở đây nhé:
https://olm.vn/hoi-dap/question/22169.html
hok tốt!!
A B C H D K
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có: \(\hept{\begin{cases}AH=BD\left(gt\right)\\\widehat{BHA}=\widehat{BDH}=90^0\\ChungAH\end{cases}\Rightarrow\Delta AHB=\Delta DBH\left(ch-gn\right)}\)
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
Bài giải :
b)
Từ I kẻ IK⊥AC;IE⊥BC;IO⊥AB
OI // AC (cùng vuông góc với AB) OIAˆ=IAKˆ (cặp góc so le trong)
AI là tia phân giác của góc BAC nên OAIˆ=KAIˆ=BACˆ2=90o2=45o
Tam giác AOI vuông cân tại O OA = OI (1)
ΔOIA=ΔKAI (cạnh huyền - góc nhọn)
OI = AK (2)
Từ (1) và (2) AO = AK
Chứng minh :
• ΔOIB=ΔEIB (cạnh huyền - góc nhọn)
OB = EB (2 cạnh tương ứng)
• ΔEIC=ΔKIC (cạnh huyền - góc nhọn)
EC = KC (2 cạnh tương ứng)
Ta có : 2AO = AO + AK = (AB - OB) + (AC - KC)
2AO=AB−BE+AC−EC=AB+AC−(BE+EC)=AB+AC−BC=8+15−17=6
AO=6;2=3(cm)
Mà tam giác AOI vuông cân tại O nên IO = AO = 3 cm
a, CM ΔIHB=ΔIKC (c.g.c).⇒IBHˆ=ICKˆ ⇒BH=CK
⇒IBHˆ=ICKˆ
Vì tam giác ABE là tam giác đều nên giao điểm của 3 đường trung trực cũng là giao điểm của 3 đường phân giác. Vậy, AHBˆ=300
⇒ICKˆ=300+Bˆ
Ta có: KCFˆ=3600−300−(1800−Aˆ−Cˆ)−600−(1800−Aˆ−Bˆ)
⇔KCFˆ=3600−300−1800+Aˆ+Cˆ−600−1800+Aˆ+Bˆ
⇔KCFˆ=900+Aˆ
Vì H là trực tâm nên AH=BH⇒AH=CK
Xét hai tam giác AHF và CKF, ta có:
AH=CK (=HB)
AF=CF (gt)
HAFˆ=KCFˆ (cmt)
⇒ΔAHF=ΔAKF (c.g.c)
b, Ta có:
HF=KF (ΔAHF=ΔAKF)
AHFˆ+HFCˆ=600⇒HCFˆ+CFKˆ=600 (AHFˆ=CFKˆ)
Vậy, tam giác HKF là tam giác đều.
Cho tam giác ABC vuông tại A có AB=6 cm , AB =8cm . Trên BA lấy điểm D sao cho BD=BC .Từ D kẻ DE vuông góc với BC tại E (E thuộc BC)
a)Tính độ dài cạnh BC
b)Chứng minh tam giác BAC = BED
c) Gọi H là giao điểm của DE và CA. Chứng minh BH là tia phân giác của góc DBC
B A D H E C
a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\) (định lí Pytago)
\(\Rightarrow BC=6^2+8^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vậy \(BC=10cm\).
b) Xét \(\Delta BDE\) và \(\Delta ABC\) có:
\(\widehat{BAC}=\widehat{BED}=90^o\)
\(AB=AC\left(gt\right)\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta ABC=\Delta EBD\) (cạnh huyền - góc nhọn) (đpcm)
c) Xét \(\Delta BCD\) có:
2 đường cao CA và DE cắt nhau tại H
\(\Rightarrow\)H là trực tâm của \(\Delta BCD\)
\(\Rightarrow BH\) là đường cao của \(\Delta BCD\) (1)
Vì AB = AC nên \(\Delta BCD\) cân tại B (2)
Từ (1), (2) \(\Rightarrow\) BH là đường cao đồng thời là tia phân giác của \(\widehat{CBD}\) (đpcm)
các bạn ơi AC=8cm nhá
MÌNH nghi bài náy sai đề mà cô hốí quá......giúp mình vs
Bài 1 trc
Hình bác tự vẽ đc nhỉ
a) +) Xét \(\Delta\)ABD và \(\Delta\)ABC có
AB : cạnh chung
\(\widehat{DAB}=\widehat{BAC}\left(=90^o\right)\)
AD = AC (gt)
=> \(\Delta\) ABD = \(\Delta\) ABC (c-g-c )
b) Theo câu a ta có \(\Delta\) ABD = \(\Delta\) ABC
=> BD = BC ( 2 góc tương ứng )
+) Xét \(\Delta\) BDC có
\(\hept{\begin{cases}BD=BC\left(cmt\right)\\\widehat{C}=60^o\end{cases}}\)
=> \(\Delta\) BDC đều
c) +) Xét \(\Delta\) ABC vuông tại A
\(\Rightarrow\widehat{C}+\widehat{ABC}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta\) ABC vuông tại A có \(\widehat{ABC}=30^o\)
=> \(AC=\frac{1}{2}BC\) ( tính chất trong 1 tam giác vuông có 1 góc bằng 30 độ thì cạnh góc vuông đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
+) Xét \(\Delta\)ABC vuông tại A
\(\Rightarrow BC^2=AC^2+AB^2\) ( định lí Py-ta-go)
\(\Rightarrow AB^2=BC^2-AC^2\)
Bạn tự làm nốt nhá
Cau kia đang bận k giúp đc r
a) Xét \(\Delta\)ACE và \(\Delta\)AKE có :
- CÂE = KÂE ( vì AE là phân giác )
- AE : cạnh chung
- Góc ACE = góc AKE ( = 90 độ )
\(\Rightarrow\)\(\Delta\)ACE = \(\Delta\)AKE ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AC = AK ( hai cạnh tương ứng ) ( đpcm )
\(\Rightarrow\)A nằm trên đường trung trực của CK ( 1 )
Ta lại có : CE = KE ( vì \(\Delta\)ACE = \(\Delta\)AKE )
\(\Rightarrow\)E nằm trên đường trung trực của CK ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)AE\(\perp\)CK ( đpcm )
tự vẽ hình-câu a bạn kia làm r thì t làm câu b tiếp nha :)
b) Tam giác BEK có: góc B + góc E + góc K =180 độ
Tam giác KEA có : góc K+góc A+góc E=180 đôk
Mà góc EKA=BKE=90 độ, góc EBK=Góc KAE=30 độ
=> Góc BEK= góc KEA
Xét tam giác BEK và tam giác AEK, ta có:
EK là cạnh chung
góc EKA=BKE=90 độ
Góc BEK= góc KEA(cmt)
Vậy tam giác BEK = tam giác AEK(g-c-g)
=> AK=BK(cặp cạnh t/ứng)
BE=AE(cặp cạnh t/ứng)
c) Áp dụng định lí pytago vào tam giác vuông CEA. ta có:
EC2+CA2=AE2=> AE2-EC2=CA2=> AE2>CA2=> AE>CA
mà AE=BE(cmt) => BE>AC
câu d t chịu >: